Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neurochem Res ; 48(10): 3084-3098, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37336824

RESUMEN

Mesenchymal stem/stromal cells (MSCs) are spindle-like heterogeneous cell populations with advantageous bidirectional immunomodulatory and hematopoietic support effects. Vascular cellular adhesion molecule-1 (VCAM-1)+ MSCs have been reported to exhibit immunoregulatory and proangiogenic capacities. Here, we studied the effects of VCAM-1+ human umbilical cord (hUC)-MSCs on neuroprotection against cerebral infarction. Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO), and VCAM-1- and VCAM-1+ hUC-MSCs were intravenously injected into the rat 4 h post-MCAO surgery. Thereafter, modified neurological severity scores (mNSS) were determined, and the Morris water maze test, 2,3,5-triphenyltetrazolium chloride (TTC), hematoxylin and eosin (H&E), Nissl, TUNEL staining, and qRT-PCR were conducted. Following induction of oxygen-glucose deprivation/reoxygenation (OGD/R), SH-SY5Y cells were co-cultured with VCAM-1- and VCAM-1+ hUC-MSCs. CCK-8, flow cytometry, ELISA, and western blot analyses were performed in vitro. Compared with VCAM-1- hUC-MSCs, administration of VCAM-1+ hUC-MSCs revealed improved therapeutic efficacy against cerebral infarction in rats, as confirmed by lower mNSS scores and infarct volumes, as well as improved learning and memory capacities. In addition, VCAM-1+ hUC-MSCs exhibited improved efficacy against neurological defects in rats with cerebral infarction, accompanied by inhibition of the NLRP3-mediated inflammatory response. VCAM-1+ hUC-MSC co-culture improved the viability and diminished NLRP3-mediated inflammatory response in OGD/R-treated SH-SY5Y cells. Moreover, NLRP3 overexpression in SH-SY5Y cells prevented the beneficial effects of VCAM-1+ hUC-MSC co-culture. Overall, our findings demonstrated the relevance of VCAM-1+ hUC-MSC-based cytotherapy for preclinical neuroprotection against cerebral infarction.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Neuroblastoma , Ratas , Humanos , Animales , Ratas Sprague-Dawley , Molécula 1 de Adhesión Celular Vascular , Proteína con Dominio Pirina 3 de la Familia NLR , Piroptosis , Neuroprotección , Infarto de la Arteria Cerebral Media/terapia , Cordón Umbilical
2.
Mol Cell Proteomics ; 20: 100001, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33517144

RESUMEN

Malaria elimination is still pending on the development of novel tools that rely on a deep understanding of parasite biology. Proteins of all living cells undergo myriad posttranslational modifications (PTMs) that are critical to multifarious life processes. An extensive proteome-wide dissection revealed a fine PTM map of most proteins in both Plasmodium falciparum, the causative agent of severe malaria, and the infected red blood cells. More than two-thirds of proteins of the parasite and its host cell underwent extensive and dynamic modification throughout the erythrocytic developmental stage. PTMs critically modulate the virulence factors involved in the host-parasite interaction and pathogenesis. Furthermore, P. falciparum stabilized the supporting proteins of erythrocyte origin by selective demodification. Collectively, our multiple omic analyses, apart from having furthered a deep understanding of the systems biology of P. falciparum and malaria pathogenesis, provide a valuable resource for mining new antimalarial targets.


Asunto(s)
Eritrocitos/parasitología , Plasmodium falciparum , Procesamiento Proteico-Postraduccional , Proteínas Protozoarias/metabolismo , Humanos , Malaria Falciparum/parasitología , Proteoma/metabolismo
3.
Exp Parasitol ; 246: 108457, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36599388

RESUMEN

Trichinellosis is caused by Trichinella spiralis, a meat-borne zoonotic disease transmitted to humans through the consumption of infected undercooked or raw meat. Surveillance using safe and precise diagnostic tools to diagnose T. spiralis in sheep is needed to assess the incidence and probability of transmission from sheep to humans. In this study, we developed a real-time PCR assay to detect T. spiralis DNA in ovine muscle samples that can be used as an alternative surveillance tool to ensure food safety using newly designed primers. The assay is specific for the Scfld4 gene of Trichinella (T1) and enables the detection of larvae in ovine muscle tissue samples with high sensitivity and specificity. Trichuris ovis, Oesophagostomum dentatum, Haemonchus contortus, and Bunostomum trigonocephalum showed no nonspecific amplification. The assay could detect Trichinella DNA concentrations as low as 0.0026 ng/µL, equivalent to 0.0064 larvae, indicating a high sensitivity for T. spiralis detection. We used this real-time PCR to detect 73 ovine muscle samples from an ovine abattoir, and five samples tested positive via real-time PCR but negative via microscopy. This assay may provide a more specific and sensitive method for rapidly detecting Trichinella larvae in ovine muscle tissues.


Asunto(s)
Trichinella spiralis , Trichinella , Triquinelosis , Humanos , Animales , Ovinos/genética , Trichinella spiralis/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Sensibilidad y Especificidad , Triquinelosis/diagnóstico , Triquinelosis/veterinaria , Triquinelosis/epidemiología , Trichinella/genética , Músculos , Larva/genética , ADN
4.
Int J Mol Sci ; 24(5)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36902335

RESUMEN

Toxoplasma gondii is an obligate protozoon that can infect all warm-blooded animals including humans. T. gondii afflicts one-third of the human population and is a detriment to the health of livestock and wildlife. Thus far, traditional drugs such as pyrimethamine and sulfadiazine used to treat T. gondii infection are inadequate as therapeutics due to relapse, long treatment period, and low efficacy in parasite clearance. Novel, efficacious drugs have not been available. Lumefantrine, as an antimalarial, is effective in killing T. gondii but has no known mechanism of action. We combined metabolomics with transcriptomics to investigate how lumefantrine inhibits T. gondii growth. We identified significant alternations in transcripts and metabolites and their associated functional pathways that are attributed to lumefantrine treatment. RH tachyzoites were used to infect Vero cells for three hours and subsequently treated with 900 ng/mL lumefantrine. Twenty-four hours post-drug treatment, we observed significant changes in transcripts associated with five DNA replication and repair pathways. Metabolomic data acquired through liquid chromatography-tandem mass spectrometry (LC-MS) showed that lumefantrine mainly affected sugar and amino acid metabolism, especially galactose and arginine. To investigate whether lumefantrine damages T. gondii DNA, we conducted a terminal transferase assay (TUNEL). TUNEL results showed that lumefantrine significantly induced apoptosis in a dose-dependent manner. Taken together, lumefantrine effectively inhibited T. gondii growth by damaging DNA, interfering with DNA replication and repair, and altering energy and amino acid metabolisms.


Asunto(s)
Toxoplasma , Animales , Chlorocebus aethiops , Humanos , Toxoplasma/metabolismo , Células Vero , Transcriptoma , Lumefantrina/farmacología , Aminoácidos/metabolismo
5.
Parasitology ; 148(1): 122-128, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33087183

RESUMEN

Toxoplasma gondii is an obligate intracellular protozoan parasite, which can infect almost all warm-blooded animals, including humans, leading to toxoplasmosis. Currently, the effective treatment for human toxoplasmosis is the combination of sulphadiazine and pyrimethamine. However, both drugs have serious side-effects and toxicity in the host. Therefore, there is an urgent need for the discovery of new anti-T. gondii drugs with high potency and less or no side-effects. Our findings suggest that lumefantrine exerts activity against T. gondii by inhibiting its proliferation in Vero cells in vitro without being toxic to Vero cells (P ≤ 0.01). Lumefantrine prolonged mice infected with T. gondii from death for 3 days at the concentration of 50 µg L-1 than negative control (phosphate-buffered saline treated only), and reduced the parasite burden in mouse tissues in vivo (P ≤ 0.01; P ≤ 0.05). In addition, a significant increase in interferon gamma (IFN-γ) production was observed in high-dose lumefantrine-treated mice (P ≤ 0.01), whereas interleukin 10 (IL-10) and IL-4 levels increased in low-dose lumefantrine-treated mice (P ≤ 0.01). The results demonstrated that lumefantrine may be a promising agent to treat toxoplasmosis, and more experiments on the protective mechanism of lumefantrine should be undertaken in further studies.


Asunto(s)
Lumefantrina/farmacología , Toxoplasma/efectos de los fármacos , Toxoplasmosis/tratamiento farmacológico , Animales , Proliferación Celular/efectos de los fármacos , Chlorocebus aethiops , Humanos , Ratones , Células Vero
6.
Mol Cell Proteomics ; 18(11): 2207-2224, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31488510

RESUMEN

Toxoplasma gondii is a unicellular protozoan parasite of the phylum Apicomplexa. The parasite repeatedly goes through a cycle of invasion, division and induction of host cell rupture, which is an obligatory process for proliferation inside warm-blooded animals. It is known that the biology of the parasite is controlled by a variety of mechanisms ranging from genomic to epigenetic to transcriptional regulation. In this study, we investigated the global protein posttranslational lysine crotonylation and 2-hydroxyisobutyrylation of two T. gondii strains, RH and ME49, which represent distinct phenotypes for proliferation and pathogenicity in the host. Proteins with differential expression and modification patterns associated with parasite phenotypes were identified. Many proteins in T. gondii were crotonylated and 2-hydroxyisobutyrylated, and they were localized in diverse subcellular compartments involved in a wide variety of cellular functions such as motility, host invasion, metabolism and epigenetic gene regulation. These findings suggest that lysine crotonylation and 2-hydroxyisobutyrylation are ubiquitous throughout the T. gondii proteome, regulating critical functions of the modified proteins. These data provide a basis for identifying important proteins associated with parasite development and pathogenicity.


Asunto(s)
Histonas/química , Lisina/análogos & derivados , Proteoma/análisis , Proteínas Protozoarias/metabolismo , Toxoplasma/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Lisina/química , Fenotipo , Procesamiento Proteico-Postraduccional , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Homología de Secuencia , Toxoplasma/clasificación , Toxoplasma/genética , Toxoplasma/crecimiento & desarrollo , Toxoplasmosis/parasitología
7.
J Infect Dis ; 222(1): 126-135, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32060530

RESUMEN

Many obligate intracellular apicomplexan parasites have adapted a distinct invasion mechanism involving a close interaction between the parasite ligands and the sialic acid (SA) receptor. We found that sialic acid binding protein-1 (SABP1), localized on the outer membrane of the zoonotic parasite Toxoplasma gondii, readily binds to sialic acid on the host cell surface. The binding was sensitive to neuraminidase treatment. Cells preincubated with recombinant SABP1 protein resisted parasite invasion in vitro. The parasite lost its invasion capacity and animal infectivity after the SABP1 gene was deleted, whereas complementation of the SABP1 gene restored the virulence of the knockout strain. These data establish the critical role of SABP1 in the invasion process of T. gondii. The previously uncharacterized protein, SABP1, facilitated T. gondii attachment and invasion via sialic acid receptors.


Asunto(s)
Proteínas Portadoras/genética , Interacciones Huésped-Parásitos , Infecciones/genética , Ácido N-Acetilneuramínico/metabolismo , Toxoplasma/genética , Toxoplasmosis/genética , Virulencia/genética , Animales , Infecciones/fisiopatología , Modelos Animales , Ácido N-Acetilneuramínico/genética , Toxoplasmosis/fisiopatología
8.
Malar J ; 17(1): 232, 2018 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-29914511

RESUMEN

BACKGROUND: Plasmodium falciparum is the most virulent parasite of the five Plasmodium species that cause human malaria, and biological analysis of the parasite is critical for the development of novel strategies for disease control. DNA endonucleases are important for maintaining the biological activity, gene stability of the parasite and interaction with host immune systems. In this study, ten sequences of DNA endonucleases were found in the genome of P. falciparum 3D7 clone, seven of them were predicted to contain an endonuclease/exonuclease/phosphatase (IPR005135) domain which plays an important role in DNA catalytic activity. The seven DNA endonucleases of P. falciparum were systematically investigated. METHODS: Plasmodium falciparum 3D7 clone was cultured in human O+ RBCs, RNA was extracted at 8, 16, 24, 32, 40, and 48 h post invasion and real-time quantitative PCR was carried out to analyse the transcription of the seven DNA endonuclease genes in asexual stages. Immunofluorescence assay was carried out to confirm the location of the encoded proteins expressed in the erythrocytic stages. Finally, the catalytic activity of the DNA nucleases were tested. RESULTS: Of the seven proteins analysed, two proteins were not soluble. Fragments derived from the rest five endonuclease sequences were successfully expressed as soluble proteins, and which were used to generate antisera for protein localization. The proteins were all located in the nucleus at ring and trophozoite stages. While at schizont stage, proteins encoded by PF3D7_1238600, PF3D7_0107200 and PF3D7_0319200 were in the punctuated forms in the parasite most likely around nuclei of the merozoites. But the proteins encoded by PF3D7_0305600 and PF3D7_1363500 were distributed around the infected erythrocyte membrane. The enzymatic activity of the recombinant GST-PF3D7_1238600 was very efficient without divalent iron, while the activity of the rest four enzymes was iron dependent. Further, divalent irons did not show any specific enhancement on the activity of GST-PF3D7_1238600, but the activity of GST-PF3D7_0107200, GST-PF3D7_1363500 and GST-PF3D7_0319200 were Cu2+ dependent. The activity of GST-PF3D7_0305600 was dependent on Mg2+ and Mn2+. Except GST-PF3D7_1363500, four of the GST tagged recombinant proteins hydrolysed the supercoiled circular plasmid DNA with or without divalent metal ions. The GST-PF3D7_1363500 protein only changed the supercoiled circular plasmid DNA into nicked plasmids, even with Cu2+. CONCLUSIONS: Fragments derived from five of the endonuclease sequences of P. falciparum 3D7 clone were successfully expressed. The proteins displayed diverse cell distribution, biochemical and enzymatic activities, which indicated that they carried different biological function in the development of the parasite in the erythrocytes. The DNA repair and DNA degradation capacity of the DNA endonucleases in the biology of the parasite remained further studied.


Asunto(s)
Desoxirribonucleasa I/genética , Eritrocitos/parasitología , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Desoxirribonucleasa I/metabolismo , Merozoítos/metabolismo , Plasmodium falciparum/enzimología , Proteínas Protozoarias/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Esquizontes/metabolismo , Análisis de Secuencia de ADN
9.
J Eukaryot Microbiol ; 65(6): 843-853, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29664138

RESUMEN

The eukaryotic ribonucleic acid (RNA) exosome is a versatile multiribonuclease complex that mediates the processing, surveillance, and degradation of virtually all classes of RNA in both the nucleus and cytoplasm. The complex, composed of 10 to 11 subunits, has been widely described in many organisms. Bioinformatic analyses revealed that there may be also an exosome-like complex in Plasmodium falciparum, a parasite of great importance in public health, with eight predicted subunits having high sequence similarity to their counterparts in yeast and human. In this work, the putative RNA catalytic components, designated as PfRrp4, PfRrp41, PfDis3, and PfRrp6, were identified and systematically analyzed. Quantitative polymerase chain reaction (QPCR) analyses suggested that all of them were transcribed steadily throughout the asexual stage. The expression of these proteins was determined by Western blot, and their localization narrowed to the cytoplasm of the parasite by indirect immunofluorescence. The recombinant proteins of PfRrp41, PfDis3, and PfRrp6 exhibited catalytic activity for single-stranded RNA (ssRNA), whereas PfRrp4 showed no processing activity of both ssRNA and dsRNA. The identification of these putative components of the RNA exosome complex opens up new perspectives for a deep understanding of RNA metabolism in the malarial parasite P. falciparum.


Asunto(s)
Dominio Catalítico , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Exosomas/genética , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteínas Recombinantes/genética , Secuencia de Aminoácidos , Regulación de la Expresión Génica , Proteoma , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , ARN , Proteínas Recombinantes de Fusión , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Alineación de Secuencia , Homología de Secuencia de Ácido Nucleico
10.
J Virol ; 89(17): 8806-15, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26085150

RESUMEN

UNLABELLED: The novel H7N9 avian influenza virus (AIV) was demonstrated to cause severe human respiratory infections in China. Here, we examined poultry specimens from live bird markets linked to human H7N9 infection in Hangzhou, China. Metagenomic sequencing revealed mixed subtypes (H5, H7, H9, N1, N2, and N9). Subsequently, AIV subtypes H5N9, H7N9, and H9N2 were isolated. Evolutionary analysis showed that the hemagglutinin gene of the novel H5N9 virus originated from A/Muscovy duck/Vietnam/LBM227/2012 (H5N1), which belongs to clade 2.3.2.1. The neuraminidase gene of the novel H5N9 virus originated from human-infective A/Hangzhou/1/2013 (H7N9). The six internal genes were similar to those of other H5N1, H7N9, and H9N2 virus strains. The virus harbored the PQRERRRKR/GL motif characteristic of highly pathogenic AIVs at the HA cleavage site. Receptor-binding experiments demonstrated that the virus binds α-2,3 sialic acid but not α-2,6 sialic acid. Identically, pathogenicity experiments also showed that the virus caused low mortality rates in mice. This newly isolated H5N9 virus is a highly pathogenic reassortant virus originating from H5N1, H7N9, and H9N2 subtypes. Live bird markets represent a potential transmission risk to public health and the poultry industry. IMPORTANCE: This investigation confirms that the novel H5N9 subtype avian influenza A virus is a reassortant strain originating from H5N1, H7N9, and H9N2 subtypes and is totally different from the H5N9 viruses reported before. The novel H5N9 virus acquired a highly pathogenic H5 gene and an N9 gene from human-infecting subtype H7N9 but caused low mortality rates in mice. Whether this novel H5N9 virus will cause human infections from its avian host and become a pandemic subtype is not known yet. It is therefore imperative to assess the risk of emergence of this novel reassortant virus with potential transmissibility to public health.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H5N1 del Virus de la Influenza A/genética , Neuraminidasa/genética , Virus Reordenados/genética , Receptores Virales/genética , Animales , Secuencia de Bases , Aves , Genes Virales/genética , Humanos , Subtipo H5N1 del Virus de la Influenza A/clasificación , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H7N9 del Virus de la Influenza A/genética , Subtipo H7N9 del Virus de la Influenza A/aislamiento & purificación , Subtipo H9N2 del Virus de la Influenza A/genética , Subtipo H9N2 del Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/virología , Gripe Humana/virología , Ratones , Datos de Secuencia Molecular , Unión Proteica , Receptores Virales/metabolismo , Alineación de Secuencia , Análisis de Secuencia de ADN , Acoplamiento Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA