Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Inorg Chem ; 60(14): 10550-10564, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34184880

RESUMEN

Atomic arrangements in the mixed-valence oxide U3O7 are refined from high-resolution neutron scattering data. The crystallographic model describes a long-range structural order in a U60O140 primitive cell (space group P42/n) containing distorted cuboctahedral oxygen clusters. By combining experimental data and electronic structure calculations accounting for spin-orbit interactions, we provide robust evidence of an interplay between charge localization and the magnetic moments carried by the uranium atoms. The calculations predict U3O7 to be a semiconducting solid with a band gap of close to 0.32 eV, and a more pronounced charge-transfer insulator behavior as compared to the well-known Mott insulator UO2. Most uranium ions (56 out of 60) occur in 9-fold and 10-fold coordinated environments, surrounding the oxygen clusters, and have a tetravalent (24 out of 60) or pentavalent (32 out of 60) state. The remaining uranium ions (4 out of 60) are not contiguous to the oxygen cuboctahedra and have a very compact, 8-fold coordinated environment with two short (2 × 1.93(3) Å) "oxo-type" bonds. The higher Hirshfeld charge and the diamagnetic character point to a hexavalent state for these four uranium ions. Hence, the valence state distribution corresponds to 24/60 × U(IV) + 32/60 U(V) + 4/60 U(VI). The tetravalent and pentavalent uranium ions are predicted to carry noncollinear magnetic moments (with amplitudes of 1.6 and 0.8 µB, respectively), resulting in canted ferromagnetic order in characteristic layers within the overall fluorite-related structure.

2.
Phys Rev Lett ; 121(5): 057401, 2018 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-30118267

RESUMEN

Previous studies have shown that positron-annihilation spectroscopy is a highly sensitive probe of the electronic structure and surface composition of ligand-capped semiconductor quantum dots (QDs) embedded in thin films. The nature of the associated positron state, however, whether the positron is confined inside the QDs or localized at their surfaces, has so far remained unresolved. Our positron-annihilation lifetime spectroscopy studies of CdSe QDs reveal the presence of a strong lifetime component in the narrow range of 358-371 ps, indicating abundant trapping and annihilation of positrons at the surfaces of the QDs. Furthermore, our ab initio calculations of the positron wave function and lifetime employing a recent formulation of the weighted density approximation demonstrate the presence of a positron surface state and predict positron lifetimes close to experimental values. Our study thus resolves the long-standing question regarding the nature of the positron state in semiconductor QDs and opens the way to extract quantitative information on surface composition and ligand-surface interactions of colloidal semiconductor QDs through highly sensitive positron-annihilation techniques.

3.
Phys Chem Chem Phys ; 19(8): 6292, 2017 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-28186219

RESUMEN

Correction for 'First-principles analysis of the spectroscopic limited maximum efficiency of photovoltaic absorber layers for CuAu-like chalcogenides and silicon' by Marnik Bercx et al., Phys. Chem. Chem. Phys., 2016, 18, 20542-20549.

4.
Phys Chem Chem Phys ; 19(3): 1945-1952, 2017 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-28009024

RESUMEN

We investigate the role of transition metal atoms of group V-b (V, Nb, and Ta) and VI-b (Cr, Mo, and W) as n- or p-type dopants in anatase TiO2 using thermodynamic principles and density functional theory with the Heyd-Scuseria-Ernzerhof HSE06 hybrid functional. The HSE06 functional provides a realistic value for the band gap, which ensures a correct classification of dopants as shallow or deep donors or acceptors. Defect formation energies and thermodynamic transition levels are calculated taking into account the constraints imposed by the stability of TiO2 and the solubility limit of the impurities. Nb, Ta, W and Mo are identified as shallow donors. Although W provides two electrons, Nb and Ta show a considerably lower formation energy, in particular under O-poor conditions. Mo donates in principle one electron, but under specific conditions can turn into a double donor. V impurities are deep donors and Cr shows up as an amphoteric defect, thereby acting as an electron trapping center in n-type TiO2 especially under O-rich conditions. A comparison with the available experimental data yields excellent agreement.

5.
Phys Chem Chem Phys ; 18(30): 20542-9, 2016 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-27405243

RESUMEN

Chalcopyrite semiconductors are of considerable interest for application as absorber layers in thin-film photovoltaic cells. When growing films of these compounds, however, they are often found to contain CuAu-like domains, a metastable phase of chalcopyrite. It has been reported that for CuInS2, the presence of the CuAu-like phase improves the short circuit current of the chalcopyrite-based photovoltaic cell. We investigate the thermodynamic stability of both phases for a selected list of I-III-VI2 materials using a first-principles density functional theory approach. For the CuIn-VI2 compounds, the difference in formation energy between the chalcopyrite and CuAu-like phase is found to be close to 2 meV per atom, indicating a high likelihood of the presence of CuAu-like domains. Next, we calculate the spectroscopic limited maximum efficiency (SLME) of the CuAu-like phase and compare the results with those of the corresponding chalcopyrite phase. We identify several candidates with a high efficiency, such as CuAu-like CuInS2, for which we obtain an SLME of 29% at a thickness of 500 nm. We observe that the SLME can have values above the Shockley-Queisser (SQ) limit, and show that this can occur because the SQ limit assumes the absorptivity to be a step function, thus overestimating the radiative recombination in the detailed balance approach. This means that it is possible to find higher theoretical efficiencies within this framework simply by calculating the J-V characteristic with an absorption spectrum. Finally, we expand our SLME analysis to indirect band gap absorbers by studying silicon, and find that the SLME quickly overestimates the reverse saturation current of indirect band gap materials, drastically lowering their calculated efficiency.

6.
Phys Chem Chem Phys ; 17(4): 2884, 2015 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-25437121

RESUMEN

Correction for 'High throughput first-principles calculations of bixbyite oxides for TCO applications' by Nasrin Sarmadian et al., Phys. Chem. Chem. Phys., 2014, 16, 17724-17733.

7.
Phys Chem Chem Phys ; 16(33): 17724-33, 2014 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-25030767

RESUMEN

We present a high-throughput computing scheme based on density functional theory (DFT) to generate a class of oxides and screen them with the aim of identifying those that might be electronically appropriate for transparent conducting oxide (TCO) applications. The screening criteria used are a minimum band gap to ensure sufficient transparency, a band edge alignment consistent with easy n- or p-type dopability, and a minimum thermodynamic phase stability to be experimentally synthesizable. Following this scheme we screened 23 binary and 1518 ternary bixbyite oxides in order to identify promising candidates, which can then be a subject of an in-depth study. The results for the known TCOs are in good agreement with the reported data in the literature. We suggest a list of several new potential TCOs, including both n- and p-type compounds.

8.
Sci Rep ; 6: 20446, 2016 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-26854336

RESUMEN

Fulfillment of the promise of transparent electronics has been hindered until now largely by the lack of semiconductors that can be doped p-type in a stable way, and that at the same time present high hole mobility and are highly transparent in the visible spectrum. Here, a high-throughput study based on first-principles methods reveals four oxides, namely X2SeO2, with X = La, Pr, Nd, and Gd, which are unique in that they exhibit excellent characteristics for transparent electronic device applications - i.e., a direct band gap larger than 3.1 eV, an average hole effective mass below the electron rest mass, and good p-type dopability. Furthermore, for La2SeO2 it is explicitly shown that Na impurities substituting La are shallow acceptors in moderate to strong anion-rich growth conditions, with low formation energy, and that they will not be compensated by anion vacancies VO or VSe.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA