Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Chemphyschem ; : e202400603, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39143934

RESUMEN

Supramolecular contacts responsible for chemical interaction of cucurbit[7]uril (CB[7]) macrocycle on a Tolyl-Viologen-Phenylene-Imidazole (T-VPI) molecular thread, at acid pH (T-VPI-H+) or after Ag+ cation addition (T-VPI-Ag+), are analytically addressed in a computational framework combining Quantum Theory of Atoms in Molecules (QTAIM) with Density Functional Theory (DFT). In this respect, the crystallographic structure (CCDC number 2217466) is taken as reference condition for addressing the nature of the chemical interactions driving the shuttling of the CB[7] between T and P stations recently observed in dilute water solutions. Beside the host(CB[7]) vs guest(T-VPI-H+ or T-VPI-Ag+) complexation, the coordination sphere of the Ag+ cation is also investigated by means of local electronic energy density - H(r) - descriptors. The derived non-covalent interaction patterns are found to support diagnostic 1H NMR signals used for detecting the mutual position of the CB[7] along the axle. This work highlights the potentialities of a QTAIM based approach in the characterization of supramolecular and metal-complexation effects in molecular aggregates such as not-interlocked synthetic molecular shuttles.

2.
Chemphyschem ; : e202400420, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39078174

RESUMEN

The recent discovery that metallophilic interactions between cyclometalated palladium supramolecular nanostructures - with efficient tumour accumulation rate in a skin melanoma model - maintain excellent photodynamic properties even in a hypoxic microenvironment has inspired the present study focused on the theoretical predictions of optical properties of the bis-cyclometalated palladium compound in different contexts. More specifically, structural and UV/Vis absorption properties of both monomeric and dimeric forms of this anticancer drug are well reproduced with a Time-Dependent Density Functional Theoretical (TD-DFT) approach based on Exchange-Correlation (XC) hybrid functionals in conjunction with conductor-like and polarization solvation effects. A further novelty is represented by a fine investigation of the supramolecular interactions between the different subunits of the drug via dispersion force correction and Quantum Theory of Atoms in Molecules (QTAIM). This contribution while supporting the photoexcitation properties derived in laboratory following the self-assembly of monomeric units when passing from dimethyl sulfoxide (DMSO) to a H2O/DMSO mixture at 298K, shed some light on the nature of the chemical interactions modulating the formation of nano-size aggregates.

3.
Inorg Chem ; 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39392662

RESUMEN

Photoactivated chemotherapy (PACT) is a form of target-oriented cancer therapy that exploits light of the proper wavelength to selectively activate the drug. Among the prodrugs used for this purpose, ruthenium-based complexes are particularly interesting, as when irradiated by light, they can release ligands by forming aquo-complexes able to bind DNA in both single and double strand fashions, causing its distortion. Using as model system a Ru(II) polypyridyl complex that has been demonstrated to be a promising photochemotherapeutic agent, all of the key aspects of the photoinduced solvolysis process and subsequent DNA interaction have been scrutinized using density functional theory (DFT) and time-dependent-DFT (TDDFT). Photoexcitation, intersystem crossing, internal conversion, mechanism by which photoinduced ligand release, and subsequent aquation steps occur have been examined. Pathways leading to the formation of both cis and trans biaquated photoproducts have been described, and the formation of the cis form of the biaquated photoproduct being the most favorable one, its reaction with a guanine base has also been reported in order to account for DNA binding.

4.
Phys Chem Chem Phys ; 26(6): 5399-5407, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38273806

RESUMEN

A third-generation artificial photo-molecular motor, featuring two photo-switchable rotating moieties in connection with a pseudoasymmetric molecular centre, is investigated by combining quantum-mechanics (QM) algorithms with classical molecular dynamics (MD) propagators. In particular, in the present contribution we have addressed such a molecular motor in different rotational isomers following the experimental observations arising from the application of multiple spectroscopic techniques in dilute solutions. At first, we focused our attention on the reproduction of the UV/Vis absorption spectrum in two solvents (acetonitrile and cyclohexane) with different gradient-corrected density functional theory (B3LYP, Cam-B3LYP, PBE, PBE0) functionals in conjunction with the conductor-like and polarizable continuum model (C-PCM). Furthermore, we refined the absorption signals by combining a classical MD sampling at room-temperature with DFT-based electronic degrees of freedom to compute perturbed excitation wavelengths driven by thermal fluctuation and solvation effects. In this respect, we have modelled the investigated artificial motor within solution nanodroplets with solvent molecules treated contextually at atomistic level and via a dielectric and polarizable continuum model.

5.
Phys Chem Chem Phys ; 26(9): 7377-7387, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38376451

RESUMEN

The first group of anionic noble-gas hydrides with the general formula HNgBeO- (Ng = Ar, Kr, Xe, Rn) is predicted through MP2, Coupled-Cluster, and Density Functional Theory computations employing correlation-consistent atomic basis sets. We derive that these species are stable with respect to the loss of H, H-, BeO, and BeO-, but unstable with respect to Ng + HBeO-. The energy barriers of the latter process are, however, high enough to suggest the conceivable existence of the heaviest HNgBeO- species as metastable in nature. Their stability arises from the interaction of the H- moiety with the positively-charged Ng atoms, particularly with the σ-hole ensuing from their ligation to BeO. This actually promotes relatively tight Ng-H bonds featuring a partially-covalent character, whose degree progressively increases when going from HArBeO- to HRnBeO-. The HNgBeO- compounds are also briefly compared with other noble-gas anions observed in the gas phase or isolated in crystal lattices.

6.
Inorg Chem ; 61(32): 12903-12912, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35900874

RESUMEN

An in-depth computational study of the ability of a recently proposed multi-action Ru(II)-Pt(IV) conjugate to act as a photosensitizer in photodynamic therapy (PDT) and chemotherapeutic drugs is presented here. The investigated complex is characterized by a polypyridyl Ru(II) chromophore linked to a Pt(IV) complex that, acting as a prodrug, should be activated by reduction releasing the Ru-based chromophore that can absorb light of proper wavelength to be used in PDT. The reaction mechanism for active species formation has been fully elucidated by means of density functional theory and its time-dependent extension. The reduction mechanism, assisted by ascorbate, of the Pt(IV) prodrug to the Pt(II) active species has been explored, taking into consideration all the possible modes of attack of the reductant for releasing the axial ligands and affording active cisplatin. Given the similarity in the photophysical properties of the chromophore linked or not to the Pt(IV) complex, both the Ru(II)-Pt(IV) conjugate precursor and the Ru(II) chromophore should be able to act as PDT photosensitizers according to type I and type II photoprocesses. In particular, they are able to generate singlet oxygen cytotoxic species as well as auto-ionize to form highly reactive O2-• species.


Asunto(s)
Antineoplásicos , Fotoquimioterapia , Profármacos , Rutenio , Antineoplásicos/farmacología , Fármacos Fotosensibilizantes/farmacología , Rutenio/farmacología , Oxígeno Singlete
7.
J Chem Phys ; 156(1): 014104, 2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-34998326

RESUMEN

This paper accounts for a general procedure of bonding analysis that is, expectedly, adequate to describe any type of interaction involving the noble-gas (Ng) atoms. Building on our recently proposed classification of the Ng-X bonds (X = binding partner) [New J. Chem. 44, 15536 (2020)], these contacts are first distinguished into three types, namely, A, B, or C, based on the topology of the electron energy density H(r) and on the shape of its plotted form. Bonds of type B or C are, then, further assigned as B-loose (Bl) or B-tight (Bt) and C-loose (Cl) or C-tight (Ct) depending on the sign that H(r) takes along the Ng-X bond path located from the topological analysis of ρ(r), particularly at around the bond critical point (BCP). Any bond of type A, Bl/Bt, or Cl/Ct is, finally, assayed in terms of contribution of covalency. This is accomplished by studying the maximum, minimum, and average value of H(r) over the volume enclosed by the low-density reduced density gradient (RDG) isosurface associated with the bond (typically, the RDG isosurface including the BCP) and the average ρ(r) over the same volume. The bond assignment is also corroborated by calculating the values of quantitative indices specifically defined for the various types of interactions (A, B, or C). The generality of our taken approach should encourage its wide application to the study of Ng compounds.

8.
Molecules ; 27(14)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35889465

RESUMEN

The structure, stability, and bonding situation of some exemplary noble gas-silicon cations were investigated at the MP2/aVTZ level of theory. The explored species include the mono-coordinated NgSiX3+ (Ng = He-Rn; X = H, F, Cl) and NgSiF22+ (Ng = He-Rn), the di-coordinated Ar2SiX3+ (X = H, F, Cl), and the "inserted" FNgSiF2+ (Ng = Kr, Xe, Rn). The bonding analysis was accomplished by the method that we recently proposed to assay the bonding situation of noblegas compounds. The Ng-Si bonds are generally tight and feature a partial contribution of covalency. In the NgSiX3+, the degree of the Ng-Si interaction mirrors the trends of two factors, namely the polarizability of Ng that increases when going from Ng = He to Ng = Rn, and the Lewis acidity of SiX3+ that decreases in the order SiF3+ > SiH3+ > SiCl3+. For the HeSiX3+, it was also possible to catch peculiar effects referable to the small size of He. When going from the NgSiF3+ to the NgSiF22+, the increased charge on Si promotes an appreciable increase inthe Ng-Si interaction, which becomes truly covalent for the heaviest Ng. The strength of the bond also increases when going from the NgSiF3+ to the "inserted" FNgSiF2+, likely due to the cooperative effect of the adjacent F atom. On the other hand, the ligation of a second Ar atom to ArSiX3+ (X = H, F, Cl), as to form Ar2(SiX3+), produces a weakening of the bond. Our obtained data were compared with previous findings already available in the literature.


Asunto(s)
Silicio , Cationes , Silicio/química
9.
Molecules ; 27(17)2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36080406

RESUMEN

Ruthenium-based complexes represent a new frontier in light-mediated therapeutic strategies against cancer. Here, a density functional-theory-based computational investigation, of the photophysical properties of a conjugate BODIPY-Ru(II) complex, is presented. Such a complex was reported to be a good photosensitizer for photodynamic therapy (PDT), successfully integrating the qualities of a NIR-absorbing distyryl-BODIPY dye and a PDT-active [Ru(bpy)3]2+ moiety. Therefore, the behaviour of the conjugate BODIPY-Ru(II) complex was compared with those of the metal-free BODIPY chromophore and the Ru(II) complex. Absorptions spectra, excitation energies of both singlet and triplet states as well as spin-orbit-matrix elements (SOCs) were used to rationalise the experimentally observed different activities of the three potential chromophores. The outcomes evidence a limited participation of the Ru moiety in the ISC processes that justifies the small SOCs obtained for the conjugate. A plausible explanation was provided combining the computational results with the experimental evidences.


Asunto(s)
Fotoquimioterapia , Rutenio , Compuestos de Boro , Fármacos Fotosensibilizantes/farmacología
10.
Int J Mol Sci ; 22(11)2021 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-34067272

RESUMEN

The COVID-19 pandemic is caused by SARS-CoV-2. Currently, most of the research efforts towards the development of vaccines and antibodies against SARS-CoV-2 were mainly focused on the spike (S) protein, which mediates virus entry into the host cell by binding to ACE2. As the virus SARS-CoV-2 continues to spread globally, variants have emerged, characterized by multiple mutations of the S glycoprotein. Herein, we employed microsecond-long molecular dynamics simulations to study the impact of the mutations of the S glycoprotein in SARS-CoV-2 Variant of Concern 202012/01 (B.1.1.7), termed the "UK variant", in comparison with the wild type, with the aim to decipher the structural basis of the reported increased infectivity and virulence. The simulations provided insights on the different dynamics of UK and wild-type S glycoprotein, regarding in particular the Receptor Binding Domain (RBD). In addition, we investigated the role of glycans in modulating the conformational transitions of the RBD. The overall results showed that the UK mutant experiences higher flexibility in the RBD with respect to wild type; this behavior might be correlated with the increased transmission reported for this variant. Our work also adds useful structural information on antigenic "hotspots" and epitopes targeted by neutralizing antibodies.


Asunto(s)
COVID-19/virología , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Anticuerpos Neutralizantes/inmunología , Sitios de Unión , Epítopos , Humanos , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Polisacáridos/química , Polisacáridos/metabolismo , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/metabolismo , Reino Unido
11.
Molecules ; 26(15)2021 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-34361629

RESUMEN

The structure, stability, and bonding character of some exemplary LAr and L-ArBeO (L = He, Ne, Ar, N2, CO, F2, Cl2, ClF, HF, HCl, NH3) were investigated by MP2 and coupled-cluster calculations, and by symmetry-adapted perturbation theory. The nature of the stabilizing interactions was also assayed by the method recently proposed by the authors to classify the chemical bonds in noble-gas compounds. The comparative analysis of the LAr and L-ArBeO unraveled geometric and bonding effects peculiarly related to the σ-hole at the Ar atom of ArBeO, including the major stabilizing/destabilizing role of the electrostatic interactionensuing from the negative/positive molecular electrostatic potential of L at the contact zone with ArBeO. The role of the inductive and dispersive components was also assayed, making it possible to discern the factors governing the transition from the (mainly) dispersive domain of the LAr, to the σ-hole domain of the L-ArBeO. Our conclusions could be valid for various types of non-covalent interactions, especially those involving σ-holes of respectable strength such as those occurring in ArBeO.

12.
Molecules ; 26(5)2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-33671081

RESUMEN

The structure, stability, and bonding character of fifteen (Ng-H-Ng)+ and (Ng-H-Ng')+ (Ng, Ng' = He-Xe) compounds were explored by theoretical calculations performed at the coupled cluster level of theory. The nature of the stabilizing interactions was, in particular, assayed using a method recently proposed by the authors to classify the chemical bonds involving the noble-gas atoms. The bond distances and dissociation energies of the investigated ions fall in rather large intervals, and follow regular periodic trends, clearly referable to the difference between the proton affinity (PA) of the various Ng and Ng'. These variations are nicely correlated with the bonding situation of the (Ng-H-Ng)+ and (Ng-H-Ng')+. The Ng-H and Ng'-H contacts range, in fact, between strong covalent bonds to weak, non-covalent interactions, and their regular variability clearly illustrates the peculiar capability of the noble gases to undergo interactions covering the entire spectrum of the chemical bond.


Asunto(s)
Gases Nobles/química , Bioensayo , Dimerización , Modelos Químicos , Modelos Moleculares , Estructura Molecular , Protones
13.
J Comput Chem ; 41(10): 1000-1011, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-31960984

RESUMEN

The complexes of helium with nearly 30 neutral molecules (M) were investigated by various techniques of bonding analysis and symmetry-adapted perturbation theory (SAPT). The main investigated function was the local electron energy density H(r), analyzed, in particular, so to estimate the degree of polarization (DoP) of He in the various He(M). As we showed recently (Borocci et al., J. Comput. Chem., 2019, 40, 2318-2328), the DoP is a quantitative index that is generally informative about the role of polarization (induction plus charge transfer [CT]) and dispersion in noncovalent noble gas complexes. As further evidence in this regard, we presently ascertained quantitative correlations between the DoP(He) of the He(M) and indices based on the electron density ρ(r), including the molecular electrostatic potential at the HeM bond critical point, as well as the percentage contributions of induction and dispersion to the SAPT binding energies. Based also on the explicit evaluation of the CT, accomplished through the study of the charge-displacement function, we derived a quantitative scale that ranks the He(M) according to their dispersive, inductive, and CT bonding character. Our taken approach could be conceivably extended to other types of noncovalent complexes.

14.
J Comput Chem ; 40(26): 2318-2328, 2019 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-31254471

RESUMEN

The bonding character of the noncovalent complexes of the noble-gas (Ng) atoms ranges from nearly purely dispersive contacts to interactions featuring appreciable contributions of induction and charge transfer. In this study, we discuss a new quantitative index that seems peculiarly informative about these diverse bonding situations. This index was termed as the degree of polarization (DoP) of Ng, as it measures, in essence, the Ng polarization promoted by the binding partner. The definition of the DoP(Ng) relies on the analysis of the local electron energy density H(r), and its physical meaning was best appreciated by studying also the charge-displacement function and the molecular electrostatic potential of the investigated benchmark species, that include nearly 60 Ngs complexes of different bonding character. The DoP(Ng) appears of general applicability, and is also positively correlated with other bonding character indices. © 2019 Wiley Periodicals, Inc.

15.
Chem Asian J ; 19(14): e202400191, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38735841

RESUMEN

This review article aims to provide an overview of the strategies employed to prepare noble gas anions under different environments and experimental conditions, and of the bonding motifs typically occurring in these species. Observed systems include anions fixed into synthesized salts, detected in the gas phase or in high-pressure devices. The major role of the theoretical calculations is also highlighted, not only in support of the experiments, but also as effective in predicting still unreported species. The chemistry of noble gas anions overall appears as a varied and rich paint, offering fascinating opportunities for both experimentalists and theoreticians.

16.
BMC Bioinformatics ; 14 Suppl 7: S11, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23815231

RESUMEN

BACKGROUND: The advent of massively parallel sequencing technologies (Next Generation Sequencing, NGS) profoundly modified the landscape of human genetics.In particular, Whole Exome Sequencing (WES) is the NGS branch that focuses on the exonic regions of the eukaryotic genomes; exomes are ideal to help us understanding high-penetrance allelic variation and its relationship to phenotype. A complete WES analysis involves several steps which need to be suitably designed and arranged into an efficient pipeline.Managing a NGS analysis pipeline and its huge amount of produced data requires non trivial IT skills and computational power. RESULTS: Our web resource WEP (Whole-Exome sequencing Pipeline web tool) performs a complete WES pipeline and provides easy access through interface to intermediate and final results. The WEP pipeline is composed of several steps:1) verification of input integrity and quality checks, read trimming and filtering; 2) gapped alignment; 3) BAM conversion, sorting and indexing; 4) duplicates removal; 5) alignment optimization around insertion/deletion (indel) positions; 6) recalibration of quality scores; 7) single nucleotide and deletion/insertion polymorphism (SNP and DIP) variant calling; 8) variant annotation; 9) result storage into custom databases to allow cross-linking and intersections, statistics and much more. In order to overcome the challenge of managing large amount of data and maximize the biological information extracted from them, our tool restricts the number of final results filtering data by customizable thresholds, facilitating the identification of functionally significant variants. Default threshold values are also provided at the analysis computation completion, tuned with the most common literature work published in recent years. CONCLUSIONS: Through our tool a user can perform the whole analysis without knowing the underlying hardware and software architecture, dealing with both paired and single end data. The interface provides an easy and intuitive access for data submission and a user-friendly web interface for annotated variant visualization.Non-IT mastered users can access through WEP to the most updated and tested WES algorithms, tuned to maximize the quality of called variants while minimizing artifacts and false positives.The web tool is available at the following web address: http://www.caspur.it/wep.


Asunto(s)
Exoma , Secuenciación de Nucleótidos de Alto Rendimiento , Programas Informáticos , Algoritmos , Humanos , Mutación INDEL , Internet , Polimorfismo de Nucleótido Simple , Interfaz Usuario-Computador
17.
Dalton Trans ; 52(38): 13517-13527, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37718620

RESUMEN

Targeting of G-quadruplex (G-Q) nucleic acids, which are helical four-stranded structures formed from guanine-rich nucleic acid sequences, has emerged in recent years as an appealing opportunity for drug intervention in anticancer therapy. Small-molecule drugs can stabilize quadruplex structures, promoting selective downregulation of gene expression and telomerase inhibition and also activating DNA damage responses. Thus, rational design of small molecular ligands able to selectively interact with and stabilize G-Q structures is a promising strategy for developing potent anti-cancer drugs with selective toxicity towards cancer cells over normal ones. Here, the outcomes of a thorough computational investigation of a recently synthesized monofunctional PtII complex (Pt1), whose selectivity for G-Q is activated by what is called adaptive binding, are reported. Quantum mechanics and molecular dynamics calculations have been employed for studying the classical key steps of the mechanism of action of PtII complexes, the conversion of the non-charged and non-planar Pt1 complex into a planar and charged PtII (Pt2) complex able to play the role of a G-Q binder and, finally, the interaction of Pt2 with G-Q. The information obtained from such an investigation allows us to rationalize the behavior of the novel PtII complex proposed to be activated by adaptive binding toward selective interaction with G-Q or similar molecules and can be exploited for designing ligands with more effective recognition ability toward G-quadruplex DNA.


Asunto(s)
Antineoplásicos , G-Cuádruplex , ADN/química , Antineoplásicos/farmacología , Antineoplásicos/química , Secuencia de Bases , Ligandos
18.
J Phys Chem A ; 116(9): 1975-83, 2012 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-22295901

RESUMEN

The O/ß-quartz interaction is described by combining our time-dependent semiclassical approach to atom-molecule/surface scattering with first-principles electronic structure calculations at the DFT (PBE0) level of accuracy. In particular, the O, O(2) interaction potentials with an on-top Si atom and its nearest O atom both localized over three different silica clusters have been calculated as a function of the oxygen-silica approaching distance. The calculated DFT potential energy surface has been used in semiclassical trajectory calculations to investigate the sticking and inelastic reflection of oxygen atoms from a model ß-quartz surface. The collisional mechanism, including the role played by the phonon dynamics, is brought to light and accurate sticking probabilities are calculated at five impact energies in the range [0.05-0.8] eV and T(S) = 1000 K. The different catalytic response of ß-quartz and ß-cristobobalite to the atomic oxygen flux is also discussed and highlighted.

19.
Phys Chem Chem Phys ; 13(6): 2342-9, 2011 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-21132200

RESUMEN

A reduced form of a synthetic hydrogen-assembled molecular shuttle for nano-technological applications has been investigated by molecular dynamics simulations and density functional theory calculations. It is composed by a benzylic amide macrocycle mechanically locked onto a thread in acetonitrile solution. Classical sampling indicates, in agreement with experimental findings, that in equilibrium condition at 298 K the macrocycle and the naphthalimide radical anion moiety within the thread strongly interact forming four strong OCN-H-O=CNR hydrogen bonds. Simulations also revealed that the geometry of the supramolecular assembly reversibly oscillates between unfolded and folded conformations, with the latter characterized by an electrostatic hook involving the succinamide end group and the macrocycle itself. Finally, the simulated UV-Vis absorption spectra for free and complexed reduced naphthalimide quantitatively confirm that the transient spectroscopic change experimentally used as a probe for monitoring the translational motion of the macrocycle, from succinamide to naphthalimide stations, accompanying the selective electrochemical reduction.


Asunto(s)
Acetonitrilos/química , Simulación de Dinámica Molecular , Rotaxanos/química , Enlace de Hidrógeno , Modelos Moleculares , Conformación Molecular , Soluciones , Espectrofotometría Ultravioleta
20.
Phys Chem Chem Phys ; 12(15): 3859-63, 2010 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-20358080

RESUMEN

The UV-Vis absorption spectra of the protocatechuic acid, a potential new drug for the treatment of cancerous tumors and central nervous diseases, is for the first time fully reproduced in water solution at room temperature; these results open up the routes to integrated experimental/simulated studies in order to identify characteristic spectroscopic features of such a molecule and its derivatives within different hosting receptors in nature.


Asunto(s)
Flavonoides/química , Hidroxibenzoatos/química , Fenoles/química , Agua/química , Flavonoides/uso terapéutico , Simulación de Dinámica Molecular , Fenoles/uso terapéutico , Polifenoles , Espectrofotometría Ultravioleta , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA