Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 30(24): 43491-43502, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36523045

RESUMEN

A counter-propagating laser-beam platform using a spherical plasma mirror was developed for the kilojoule-class petawatt LFEX laser. The temporal and spatial overlaps of the incoming and redirected beams were measured with an optical interferometer and an x-ray pinhole camera. The plasma mirror performance was evaluated by measuring fast electrons, ions, and neutrons generated in the counter-propagating laser interaction with a Cu-doped deuterated film on both sides. The reflectivity and peak intensity were estimated as ∼50% and ∼5 × 1018 W/cm2, respectively. The platform could enable studies of counter-streaming charged particles in high-energy-density plasmas for fundamental and inertial confinement fusion research.

2.
Phys Rev Lett ; 127(16): 165001, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34723597

RESUMEN

Ablative Rayleigh-Taylor instability growth was investigated to elucidate the fundamental physics of thermal conduction suppression in a magnetic field. Experiments found that unstable modulation growth is faster in an external magnetic field. This result was reproduced by a magnetohydrodynamic simulation based on a Braginskii model of electron thermal transport. An external magnetic field reduces the electron thermal conduction across the magnetic field lines because the Larmor radius of the thermal electrons in the field is much shorter than the temperature scale length. Thermal conduction suppression leads to spatially nonuniform pressure and reduced thermal ablative stabilization, which in turn increases the growth of ablative Rayleigh-Taylor instability.

3.
Phys Rev Lett ; 125(18): 185701, 2020 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-33196243

RESUMEN

Hugoniot of full-dense nanopolycrystalline diamond (NPD) was investigated up to 1600 GPa. The Hugoniot elastic limit of NPD is 208 (±14) GPa, which is more than twice as high as that of single-crystal diamond. The Hugoniot of NPD is stiffer than that of single-crystal diamond up to 500 GPa, while no significant difference is observed at higher pressures where the elastic precursor is overdriven by a following plastic wave. These findings confirm that the grain boundary strengthening effect recognized in static compression experiments is also effective against high strain-rate dynamic compressions.

4.
Phys Rev Lett ; 124(3): 035001, 2020 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-32031862

RESUMEN

Fast isochoric laser heating is a scheme to heat matter with a relativistic intensity (>10^{18} W/cm^{2}) laser pulse for producing an ultrahigh-energy-density (UHED) state. We have demonstrated an efficient fast isochoric heating of a compressed dense plasma core with a multipicosecond kilojoule-class petawatt laser and an assistance of externally applied kilotesla magnetic fields for guiding fast electrons to the dense plasma. A UHED state of 2.2 PPa is achieved experimentally with 4.6 kJ of total laser energy that is one order of magnitude lower than the energy used in the conventional implosion scheme. A two-dimensional particle-in-cell simulation confirmed that diffusive heating from a laser-plasma interaction zone to the dense plasma plays an essential role to the efficient creation of the UHED state.

5.
Proc Natl Acad Sci U S A ; 113(28): 7745-9, 2016 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-27357672

RESUMEN

Investigation of the iron phase diagram under high pressure and temperature is crucial for the determination of the composition of the cores of rocky planets and for better understanding the generation of planetary magnetic fields. Here we present X-ray diffraction results from laser-driven shock-compressed single-crystal and polycrystalline iron, indicating the presence of solid hexagonal close-packed iron up to pressure of at least 170 GPa along the principal Hugoniot, corresponding to a temperature of 4,150 K. This is confirmed by the agreement between the pressure obtained from the measurement of the iron volume in the sample and the inferred shock strength from velocimetry deductions. Results presented in this study are of the first importance regarding pure Fe phase diagram probed under dynamic compression and can be applied to study conditions that are relevant to Earth and super-Earth cores.

6.
Phys Rev Lett ; 111(20): 205001, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24289690

RESUMEN

The critical strength of a magnetic field required for the suppression of the Richtmyer-Meshkov instability (RMI) is investigated numerically by using a two-dimensional single-mode analysis. For the cases of magnetohydrodynamic parallel shocks, the RMI can be stabilized as a result of the extraction of vorticity from the interface. A useful formula describing a critical condition for magnetohydrodynamic RMI is introduced and is successfully confirmed by direct numerical simulations. The critical field strength is found to be largely dependent on the Mach number of the incident shock. If the shock is strong enough, even low-ß plasmas can be subject to the growth of the RMI.

7.
Phys Rev E ; 108(2-2): 025208, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37723746

RESUMEN

Collisionless shock acceleration, which transfers localized particle energies to nonthermal energetic particles via electromagnetic potential, is ubiquitous in space plasma. We investigate dynamics of collisionless electrostatic shocks that appear at the interface of two plasma slabs with different pressures using one-dimensional particle-in-cell (PIC) simulations and find that the shock structure transforms to a double-layer structure at the high density gradient. The threshold condition of the structure transformation is identified as density ratio of the two plasma slabs Γ âˆ¼40 regardless of the temperature ratio between them. We then update the collisionless shock model that takes into account density expansion effects caused by a rarefaction wave to improve the prediction of the critical Mach numbers. These critical Mach numbers are benchmarked by PIC simulations for a wide range of Γ. Furthermore, we introduce a semianalytical approach to forecast the shock velocity just from the initial conditions based on a concept of the accelerated fraction α.

8.
Phys Rev E ; 108(3-2): 035205, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37849131

RESUMEN

Advances in laser technology have led to ever-increasing laser intensities. As a result, in addition to the amplified spontaneous emission and pedestal, it has become necessary to accurately treat the relativistic rising edge component. This component has not needed much consideration in the past because of its not relativistic intensity. In the previous study, a thin contamination layer was blown away from the target by the rear sheath field due to the relativistic rising edge component, and the target bulk was accelerated by the sheath field due to the main pulse. These indicated that the proton acceleration is not efficient in the target normal sheath acceleration by the ultrahigh intense femtosecond laser if the proton-containing layer is as thin as the contamination layer. Here we employ a double-layer target, making the second (rear) layer thick enough not to be blown away by the rising edge, so that the second layer is accelerated by the main pulse. The first layer is composed of heavy ions to reduce the total thickness of the target for efficient proton acceleration. We investigate an optimal design of a double-layer target for proton acceleration by the ultrahigh intense femtosecond laser considering the relativistic rising edge using two-dimensional particle-in-cell simulations. We also discuss how to optimize the design of such a double-layer target and find that it can be designed with two conditions: the first layer is not penetrated by hole boring, and the second layer is not blown away by the rising edge.

9.
Science ; 382(6666): 69-72, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37796999

RESUMEN

The motion of line defects (dislocations) has been studied for more than 60 years, but the maximum speed at which they can move is unresolved. Recent models and atomistic simulations predict the existence of a limiting velocity of dislocation motion between the transonic and subsonic ranges at which the self-energy of dislocation diverges, though they do not deny the possibility of the transonic dislocations. We used femtosecond x-ray radiography to track ultrafast dislocation motion in shock-compressed single-crystal diamond. By visualizing stacking faults extending faster than the slowest sound wave speed of diamond, we show the evidence of partial dislocations at their leading edge moving transonically. Understanding the upper limit of dislocation mobility in crystals is essential to accurately model, predict, and control the mechanical properties of materials under extreme conditions.

10.
Phys Rev E ; 105(5-2): 055202, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35706231

RESUMEN

The interaction of relativistic short-pulse lasers with matter produces fast electrons with over megaampere currents, which supposedly heats a solid target isochorically and forms a hot dense plasma. In a picosecond timescale, however, thermal diffusion from hot preformed plasma turns out to be the dominant process of isochoric heating. We describe a heating process, fast thermal diffusion, launched from the preformed plasma heated resistively by the fast electron current. We demonstrate the fast thermal diffusion in the keV range in a solid density plasma by a series of one-dimensional particle-in-cell simulations. A theoretical model of the fast thermal diffusion is developed and we derive the diffusion speed as a function of the laser amplitude and target density. Under continuous laser irradiation, the diffusion front propagates at a constant speed in uniform plasma. Our model can provide a guideline for fast isochoric heating using future kilojoule petawatt lasers.

11.
Phys Rev E ; 104(3-2): 035205, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34654167

RESUMEN

Interactions between large-amplitude laser light and strongly magnetized dense plasma have been investigated by one- and two-dimensional electromagnetic particle-in-cell simulations. Since whistler waves have no critical density, they can propagate through plasmas beyond the critical density in principle. However, we have found the propagation of whistler waves is restricted significantly by the stimulated Brillouin scattering. It is confirmed that the period during which the whistler wave can propagate in overcritical plasmas is proportional to the growth time of the ion-acoustic wave via the Brillouin instability. The allowable pulse duration of the whistler wave has a power-law dependence on the amplitude of the whistler wave and the external magnetic field.

12.
Phys Rev E ; 103(4-1): 043201, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34005941

RESUMEN

Intense laser-plasma interactions are an essential tool for the laboratory study of ion acceleration at a collisionless shock. With two-dimensional particle-in-cell calculations of a multicomponent plasma we observe two electrostatic collisionless shocks at two distinct longitudinal positions when driven with a linearly polarized laser at normalized laser vector potential a_{0} that exceeds 10. Moreover, these shocks, associated with protons and carbon ions, show a power-law dependence on a_{0} and accelerate ions to different velocities in an expanding upstream with higher flux than in a single-component hydrogen or carbon plasma. This results from an electrostatic ion two-stream instability caused by differences in the charge-to-mass ratio of different ions. Particle acceleration in collisionless shocks in multicomponent plasma are ubiquitous in space and astrophysics, and these calculations identify the possibility for studying these complex processes in the laboratory.

13.
Phys Rev E ; 104(3-2): 035206, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34654211

RESUMEN

Laser experiments are becoming established as tools for astronomical research that complement observations and theoretical modeling. Localized strong magnetic fields have been observed at a shock front of supernova explosions. Experimental confirmation and identification of the physical mechanism for this observation are of great importance in understanding the evolution of the interstellar medium. However, it has been challenging to treat the interaction between hydrodynamic instabilities and an ambient magnetic field in the laboratory. Here, we developed an experimental platform to examine magnetized Richtmyer-Meshkov instability (RMI). The measured growth velocity was consistent with the linear theory, and the magnetic-field amplification was correlated with RMI growth. Our experiment validated the turbulent amplification of magnetic fields associated with the shock-induced interfacial instability in astrophysical conditions. Experimental elucidation of fundamental processes in magnetized plasmas is generally essential in various situations such as fusion plasmas and planetary sciences.

14.
Phys Rev E ; 102(5-1): 053214, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33327076

RESUMEN

Propagation features of circularly polarized (CP) electromagnetic waves in magnetized plasmas are determined by the plasma density and the magnetic field strength. This property can be applied to design a unique plasma photonic device for intense short-pulse lasers. We have demonstrated by numerical simulations that a thin plasma foil under an external magnetic field works as a polarizing plate to separate a linearly polarized laser into two CP waves traveling in the opposite direction. This plasma photonic device has an advantage for generating intense CP waves even with a relativistic amplitude. For various research purposes, intense CP lights are strongly required to create high energy density plasmas in the laboratory.

15.
Phys Rev E ; 102(1-1): 013203, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32794946

RESUMEN

We have investigated the effects of a smooth transition layer at the contact discontinuity on the growth of the Richtmyer-Meshkov instability (RMI) by hydrodynamic numerical simulations, and we derived an empirical condition for the suppression of the instability. The transition layer has little influence on the RMI when the thickness L is narrower than the wavelength of an interface modulation λ. However, if the transition layer becomes broader than λ, the perturbed velocity associated with the RMI is reduced considerably. The suppression condition is interpreted as the cases in which the shock transit time through the transition layer is longer than the sound crossing time of the modulation wavelength. The fluctuation kinetic energy decreases as L^{-p} with p=2.5, which indicates that the growth velocity of the RMI decreases in proportion to L^{-p/2} by the presence of the transition layer. This feature is found to be quite universal and appeared in a wide range of shock-interface interactions.

16.
Phys Rev E ; 101(1-1): 013206, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32069605

RESUMEN

Thermal fusion plasmas initiated by standing whistler waves are investigated numerically by two- and one-dimensional particle-in-cell simulations. When a standing whistler wave collapses due to the wave breaking of ion plasma waves, the energy of the electromagnetic waves transfers directly to the ion kinetic energy. Here we find that ion heating by use of standing whistler waves is operational even in multidimensional simulations of multi-ion species targets, such as deuterium-tritium (DT) ices and solid ammonia borane (H_{6}BN). The energy conversion efficiency to ions becomes as high as 15% of the injected laser energy, which depends significantly on the target thickness and laser pulse duration. The ion temperature could reach a few tens of keV or much higher if appropriate laser-plasma conditions are selected. DT fusion plasmas generated by this method must be useful as efficient neutron sources. Our numerical simulations suggest that the neutron generation efficiency exceeds 10^{9} n/J per steradian, which is beyond the current achievements of the state-of-the-art laser experiments. Standing whistler-wave heating would expand the experimental possibility for an alternative ignition design of magnetically confined laser fusion and also for more difficult fusion reactions, including the aneutronic proton-boron reaction.

17.
Phys Rev E ; 100(5-1): 053205, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31869898

RESUMEN

Efficient energy transfer from electromagnetic waves to ions has been demanded to control laboratory plasmas for various applications and could be useful to understand the nature of space and astrophysical plasmas. However, there exists the severe unsolved problem that most of the wave energy is converted quickly to electrons but not to ions. Here, an energy-to-ion conversion process in overdense plasmas associated with whistler waves is investigated by numerical simulations and a theoretical model. Whistler waves propagating along a magnetic field in space and laboratories often form standing waves by the collision of counter-propagating waves or through the reflection. We find that ions in standing whistler waves acquire a large amount of energy directly from the waves over a short time scale comparable to the wave oscillation period. The thermalized ion temperature increases in proportion to the square of the wave amplitude and becomes much higher than the electron temperature in a wide range of wave-plasma conditions. This efficient ion-heating mechanism applies to various plasma phenomena in space physics and fusion energy sciences.

18.
Phys Rev E ; 96(4-1): 043209, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29347491

RESUMEN

The interaction of dense plasmas with an intense laser under a strong external magnetic field has been investigated. When the cyclotron frequency for the ambient magnetic field is higher than the laser frequency, the laser's electromagnetic field is converted to the whistler mode that propagates along the field line. Because of the nature of the whistler wave, the laser light penetrates into dense plasmas with no cutoff density, and produces superthermal electrons through cyclotron resonance. It is found that the cyclotron resonance absorption occurs effectively under the broadened conditions, or a wider range of the external field, which is caused by the presence of relativistic electrons accelerated by the laser field. The upper limit of the ambient field for the resonance increases in proportion to the square root of the relativistic laser intensity. The propagation of a large-amplitude whistler wave could raise the possibility for plasma heating and particle acceleration deep inside dense plasmas.

19.
Phys Rev E ; 95(5-1): 053204, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28618498

RESUMEN

Recent progress in the generation in the laboratory of a strong (>100-T) magnetic field enables us to investigate experimentally unexplored magnetohydrodynamics phenomena of a high-energy-density plasma, which an external magnetic field of 200-300 T notably affects due to anisotropic thermal conduction, even when the magnetic field pressure is much lower than the plasma pressure. The external magnetic field reduces electron thermal conduction across the external magnetic field lines because the Larmor radius of the thermal electrons in the external magnetic field is much shorter than the mean free path of the thermal electrons. The velocity of a thin polystyrene foil driven by intense laser beams in the strong external magnetic field is faster than that in the absence of the external magnetic field. Growth of sinusoidal corrugation imposed initially on the laser-driven polystyrene surface is enhanced by the external magnetic field because the plasma pressure distribution becomes nonuniform due to the external magnetic-field structure modulated by the perturbed plasma flow ablated from the corrugated surface.

20.
Sci Adv ; 2(8): e1600157, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27493993

RESUMEN

Forsterite (Mg2SiO4) is one of the major planetary materials, and its behavior under extreme conditions is important to understand the interior structure of large planets, such as super-Earths, and large-scale planetary impact events. Previous shock compression measurements of forsterite indicate that it may melt below 200 GPa, but these measurements did not go beyond 200 GPa. We report the shock response of forsterite above ~250 GPa, obtained using the laser shock wave technique. We simultaneously measured the Hugoniot and temperature of shocked forsterite and interpreted the results to suggest the following: (i) incongruent crystallization of MgO at 271 to 285 GPa, (ii) phase transition of MgO at 285 to 344 GPa, and (iii) remelting above ~470 to 500 GPa. These exothermic and endothermic reactions are seen to occur under extreme conditions of pressure and temperature. They indicate complex structural and chemical changes in the system MgO-SiO2 at extreme pressures and temperatures and will affect the way we understand the interior processes of large rocky planets as well as material transformation by impacts in the formation of planetary systems.


Asunto(s)
Fenómenos Físicos , Presión , Compuestos de Silicona , Rayos Láser , Transición de Fase
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA