Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
FASEB J ; 31(4): 1639-1649, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28096235

RESUMEN

Cardiotrophin (CT)-1 is a regulator of glucose and lipid homeostasis. In the present study, we analyzed whether CT-1 also acts to peripherally regulate metabolic rhythms and adipose tissue core clock genes in mice. Moreover, the circadian pattern of plasma CT-1 levels was evaluated in normal-weight and overweight subjects. The circadian rhythmicity of oxygen consumption rate (Vo2) was disrupted in aged obese CT-1-deficient (CT-1-/-) mice (12 mo). Although circadian rhythms of Vo2 were conserved in young lean CT-1-/- mice (2 mo), CT-1 deficiency caused a phase shift of the acrophase. Most of the clock genes studied (Clock, Bmal1, and Per2) displayed a circadian rhythm in adipose tissue of both wild-type (WT) and CT-1-/- mice. However, the pattern was altered in CT-1-/- mice toward a lower percentage of the rhythm or lower amplitude, especially for Bmal1 and Clock. Moreover, CT-1 mRNA levels in adipose tissue showed significant circadian fluctuations in young WT mice. In humans, CT-1 plasma profile exhibited a 24-h circadian rhythm in normal-weight but not in overweight subjects. The 24-h pattern of CT-1 was characterized by a pronounced increase during the night (from 02:00 to 08:00). These observations suggest a potential role for CT-1 in the regulation of metabolic circadian rhythms.-López-Yoldi, M., Stanhope, K. L., Garaulet, M., Chen, X. G., Marcos-Gómez, B., Carrasco-Benso, M. P., Santa Maria, E. M., Escoté, X., Lee, V., Nunez, M. V., Medici, V., Martínez-Ansó, E., Sáinz, N., Huerta, A. E., Laiglesia, L. M., Prieto, J., Martínez, J. A., Bustos, M., Havel, P. J., Moreno-Aliaga, M. J. Role of cardiotrophin-1 in the regulation of metabolic circadian rhythms and adipose core clock genes in mice and characterization of 24-h circulating CT-1 profiles in normal-weight and overweight/obese subjects.


Asunto(s)
Tejido Adiposo/metabolismo , Proteínas CLOCK/genética , Ritmo Circadiano , Citocinas/metabolismo , Obesidad/metabolismo , Tejido Adiposo/fisiología , Adolescente , Adulto , Animales , Proteínas CLOCK/metabolismo , Citocinas/sangre , Citocinas/genética , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/sangre , Consumo de Oxígeno
2.
Plant Cell Physiol ; 54(7): 1200-16, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23659918

RESUMEN

Berry organoleptic properties are highly influenced by ripening environmental conditions. In this study, we used grapevine fruiting cuttings to follow berry ripening under different controlled conditions of temperature and irradiation intensity. Berries ripened at higher temperatures showed reduced anthocyanin accumulation and hastened ripening, leading to a characteristic drop in malic acid and total acidity. The GrapeGen GeneChip® combined with a newly developed GrapeGen 12Xv1 MapMan version were utilized for the functional analysis of berry transcriptomic differences after 2 week treatments from veraison onset. These analyses revealed the establishment of a thermotolerance response in berries under high temperatures marked by the induction of heat shock protein (HSP) chaperones and the repression of transmembrane transporter-encoding transcripts. The thermotolerance response was coincident with up-regulation of ERF subfamily transcription factors and increased ABA levels, suggesting their participation in the maintenance of the acclimation response. Lower expression of amino acid transporter-encoding transcripts at high temperature correlated with balanced amino acid content, suggesting a transcriptional compensation of temperature effects on protein and membrane stability to allow for completion of berry ripening. In contrast, the lower accumulation of anthocyanins and higher malate metabolization measured under high temperature might partly result from imbalance in the expression and function of their specific transmembrane transporters and expression changes in genes involved in their metabolic pathways. These results open up new views to improve our understanding of berry ripening under high temperatures.


Asunto(s)
Adaptación Fisiológica/genética , Frutas/genética , Temperatura , Vitis/genética , Ácido Abscísico/metabolismo , Aminoácidos/metabolismo , Antocianinas/metabolismo , Proteínas de Unión al ADN/genética , Frutas/metabolismo , Frutas/fisiología , Regulación del Desarrollo de la Expresión Génica/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Factores de Transcripción del Choque Térmico , Proteínas de Choque Térmico/genética , Luz , Malatos/metabolismo , Redes y Vías Metabólicas/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas de Plantas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/genética , Transcriptoma , Vitis/metabolismo , Vitis/fisiología
3.
Eur Radiol Exp ; 1(1): 7, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29708175

RESUMEN

BACKGROUND: The study was aimed at: (1) describing the incidence of anatomic variations of the portal system in the rabbit using direct portography; and (2) estimating the liver volume and caudate lobe volume by using contrast-enhanced computed tomography (CECT) in the same animal model. METHODS: Forty-six New Zealand white rabbits were included. All of them underwent direct portography and unenhanced CECT. Conventional liver rabbit portal system anatomy (type 1) consisted of the bifurcation of the main portal vein (MPV) into the right portal vein (RPV) and left portal vein (LPV), which subsequently divided into medial left portal vein and lateral left portal vein. Trifurcation of the LPV was considered type 2. The LPV that divides into four smaller branches was classified as type 3. Other configurations of the portal system, including particular cases of MPV branching, were grouped as type 4. Liver lobes were manually segmented. RESULTS: The incidence of each type of portal system anatomy was: type 1, 67.4%; type 2, 15.2%; type 3, 13.0%); and type 4, 4.3%. The mean volume of the caudate lobe was 19.1 ml ± 5.7 ml and of the cranial lobes it was 66.7 ml ± 13.7 ml, and the total liver volume was 85.7 ml ± 16.7 ml. CONCLUSIONS: In New Zealand white rabbits, type 1 is the prevalent type of portal system, liver volume is about 86 ml, and the caudate and cranial lobes are separated. This information could be important when planning experimental rabbit liver procedures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA