RESUMEN
Genetic lesions in X-linked inhibitor of apoptosis (XIAP) pre-dispose humans to cell death-associated inflammatory diseases, although the underlying mechanisms remain unclear. Here, we report that two patients with XIAP deficiency-associated inflammatory bowel disease display increased inflammatory IL-1ß maturation as well as cell death-associated caspase-8 and Gasdermin D (GSDMD) processing in diseased tissue, which is reduced upon patient treatment. Loss of XIAP leads to caspase-8-driven cell death and bioactive IL-1ß release that is only abrogated by combined deletion of the apoptotic and pyroptotic cell death machinery. Namely, extrinsic apoptotic caspase-8 promotes pyroptotic GSDMD processing that kills macrophages lacking both inflammasome and apoptosis signalling components (caspase-1, -3, -7, -11 and BID), while caspase-8 can still cause cell death in the absence of both GSDMD and GSDME when caspase-3 and caspase-7 are present. Neither caspase-3 and caspase-7-mediated activation of the pannexin-1 channel, or GSDMD loss, prevented NLRP3 inflammasome assembly and consequent caspase-1 and IL-1ß maturation downstream of XIAP inhibition and caspase-8 activation, even though the pannexin-1 channel was required for NLRP3 triggering upon mitochondrial apoptosis. These findings uncouple the mechanisms of cell death and NLRP3 activation resulting from extrinsic and intrinsic apoptosis signalling, reveal how XIAP loss can co-opt dual cell death programs, and uncover strategies for targeting the cell death and inflammatory pathways that result from XIAP deficiency.
Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Humanos , Apoptosis , Caspasa 1/genética , Caspasa 1/metabolismo , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Caspasa 8/genética , Caspasa 8/metabolismo , Muerte Celular , Inflamasomas/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis/fisiología , Proteína Inhibidora de la Apoptosis Ligada a X/genética , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismoRESUMEN
In the final stages of apoptosis, apoptotic cells can generate a variety of membrane-bound vesicles known as apoptotic extracellular vesicles (ApoEVs). Apoptotic bodies (ApoBDs), a major subset of ApoEVs, are formed through a process termed apoptotic cell disassembly characterised by a series of tightly regulated morphological steps including plasma membrane blebbing, apoptotic membrane protrusion formation and fragmentation into ApoBDs. To better characterise the properties of ApoBDs and elucidate their function, a number of methods including differential centrifugation, filtration and fluorescence-activated cell sorting were developed to isolate ApoBDs. Furthermore, it has become increasingly clear that ApoBD formation can contribute to various biological processes such as apoptotic cell clearance and intercellular communication. Together, recent literature demonstrates that apoptotic cell disassembly and thus, ApoBD formation, is an important process downstream of apoptotic cell death. In this chapter, we discuss the current understandings of the molecular mechanisms involved in regulating apoptotic cell disassembly, techniques for ApoBD isolation, and the functional roles of ApoBDs in physiological and pathological settings.
Asunto(s)
Vesículas Extracelulares , ApoptosisRESUMEN
Undecylenic acid, a monounsaturated fatty acid, is currently in clinical use as a topical antifungal agent, however the potential for therapeutic application in other disease settings has not been investigated. In this study, we describe a novel platform for the solubilization of fatty acids using amino acids and utilize this approach to define a tumoricidal activity and underlying mechanism for undecylenic acid. We examined a novel formulation of undecylenic acid compounded with L-Arginine, called GS-1, that induced concentration-dependent tumor cell death, with undecylenic acid being the cytotoxic component. Further investigation revealed that GS-1-mediated cell death was caspase-dependent with a reduction in mitochondrial membrane potential, suggesting a pro-apoptotic mechanism of action. Additionally, GS-1 was found to localize intracellularly to lipid droplets. In contrast to previous studies where lipid droplets have been shown to be protective against fatty acid-induced cell death, we showed that lipid droplets could not protect against GS-1-induced cytotoxicity. We also found a role for Fatty Acid Transport Protein 2 (FATP2) in the uptake of this compound. Collectively, this study demonstrates that GS-1 has effective pro-apoptotic antitumor activity in vitro and, together with the novel platform of fatty acid solubilization, contributes to the re-emerging field of fatty acids as potential anti-cancer therapeutics.
Asunto(s)
Apoptosis , Ácidos Undecilénicos , Ácidos Undecilénicos/farmacología , Ácidos Grasos/química , Caspasas , Ácidos Grasos Monoinsaturados/farmacologíaRESUMEN
During apoptosis, dying cells undergo dynamic morphological changes that ultimately lead to their disassembly into fragments called apoptotic bodies (ApoBDs). Reorganisation of the cytoskeletal structures is key in driving various apoptotic morphologies, including the loss of cell adhesion and membrane bleb formation. However, whether cytoskeletal components are also involved in morphological changes that occur later during apoptosis, such as the recently described generation of thin apoptotic membrane protrusions called apoptopodia and subsequent ApoBD formation, is not well defined. Through monitoring the progression of apoptosis by confocal microscopy, specifically focusing on the apoptopodia formation step, we characterised the presence of F-actin and microtubules in a subset of apoptopodia generated by T cells and monocytes. Interestingly, targeting actin polymerisation and microtubule assembly pharmacologically had no major effect on apoptopodia formation. These data demonstrate apoptopodia as a novel type of membrane protrusion that could be formed in the absence of actin polymerisation and microtubule assembly.
Asunto(s)
Actinas/metabolismo , Apoptosis , Extensiones de la Superficie Celular/metabolismo , Citoesqueleto/metabolismo , Vesículas Extracelulares/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Apoptosis/efectos de la radiación , Técnicas de Cultivo de Célula , Membrana Celular/efectos de los fármacos , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/efectos de la radiación , Extensiones de la Superficie Celular/efectos de los fármacos , Extensiones de la Superficie Celular/genética , Extensiones de la Superficie Celular/efectos de la radiación , Células Cultivadas , Conexinas/genética , Conexinas/metabolismo , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/efectos de la radiación , Vesículas Extracelulares/genética , Femenino , Humanos , Células Jurkat , Masculino , Ratones , Ratones Endogámicos C57BL , Monocitos/citología , Monocitos/efectos de los fármacos , Monocitos/efectos de la radiación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Linfocitos T/citología , Linfocitos T/efectos de los fármacos , Linfocitos T/efectos de la radiación , Tubulina (Proteína)/genética , Vimentina/genética , Vimentina/metabolismoRESUMEN
The original version of the article unfortunately contained a typo in the fourth author name. The author name was incorrectly listed as Rochelle Tixeria. The correct name should be Rochelle Tixeira. The original article has been corrected.
RESUMEN
Discovery of new small molecules that can activate distinct programmed cell death pathway is of significant interest as a research tool and for the development of novel therapeutics for pathological conditions such as cancer and infectious diseases. The small molecule raptinal was discovered as a pro-apoptotic compound that can rapidly trigger apoptosis by promoting the release of cytochrome c from the mitochondria and subsequently activating the intrinsic apoptotic pathway. As raptinal is very effective at inducing apoptosis in a variety of different cell types in vitro and in vivo, it has been used in many studies investigating cell death as well as the clearance of dying cells. While examining raptinal as an apoptosis inducer, we unexpectedly identified that in addition to its pro-apoptotic activities, raptinal can also inhibit the activity of caspase-activated Pannexin 1 (PANX1), a ubiquitously expressed transmembrane channel that regulates many cell death-associated processes. By implementing numerous biochemical, cell biological and electrophysiological approaches, we discovered that raptinal can simultaneously induce apoptosis and inhibit PANX1 activity. Surprisingly, raptinal was found to inhibit cleavage-activated PANX1 via a mechanism distinct to other well-described PANX1 inhibitors such as carbenoxolone and trovafloxacin. Furthermore, raptinal also interfered with PANX1-regulated apoptotic processes including the release of the 'find-me' signal ATP, the formation of apoptotic cell-derived extracellular vesicles, as well as NLRP3 inflammasome activation. Taken together, these data identify raptinal as the first compound that can simultaneously induce apoptosis and inhibit PANX1 channels. This has broad implications for the use of raptinal in cell death studies as well as in the development new PANX1 inhibitors.
Asunto(s)
Apoptosis , Conexinas , Fluorenos , Adenosina Trifosfato/metabolismo , Apoptosis/efectos de los fármacos , Muerte Celular , Conexinas/antagonistas & inhibidores , Conexinas/metabolismo , Ciclopentanos/farmacologíaRESUMEN
Endothelial cells are integral components of all vasculature within complex organisms. As they line the blood vessel wall, endothelial cells are constantly exposed to a variety of molecular factors and shear force that can induce cellular damage and stress. However, how endothelial cells are removed or eliminate unwanted cellular contents, remains unclear. The generation of large extracellular vesicles (EVs) has emerged as a key mechanism for the removal of cellular waste from cells that are dying or stressed. Here, we used intravital microscopy of the bone marrow to directly measure the kinetics of EV formation from endothelial cells in vivo under homoeostatic and malignant conditions. These large EVs are mitochondria-rich, expose the 'eat me' signal phosphatidylserine, and can interact with immune cell populations as a potential clearance mechanism. Elevated levels of circulating EVs correlates with degradation of the bone marrow vasculature caused by acute myeloid leukaemia. Together, our study provides in vivo spatio-temporal characterization of EV formation in the murine vasculature and suggests that circulating, large endothelial cell-derived EVs can provide a snapshot of vascular damage at distal sites.
Asunto(s)
Células Endoteliales , Vesículas Extracelulares , Leucemia Mieloide Aguda , Ratones Endogámicos C57BL , Animales , Vesículas Extracelulares/metabolismo , Células Endoteliales/metabolismo , Ratones , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Médula Ósea/metabolismo , Humanos , Microscopía Intravital/métodos , Fosfatidilserinas/metabolismo , Mitocondrias/metabolismo , Masculino , FemeninoRESUMEN
Apoptosis is a form of programmed cell death that occurs throughout life as part of normal development as well as pathologic processes including chronic inflammation and infection. Although the death of a cell is often considered as the only biological outcome of a cell committed to apoptosis, it is becoming increasingly clear that the dying cell can actively communicate with other cells via soluble factors as well as membrane-bound extracellular vesicles (EVs) to regulate processes including cell clearance, immunity and tissue repair. Compared to EVs generated from viable cells such as exosomes and microvesicles, apoptotic cell-derived EVs (ApoEVs) are less well defined and the basic criteria for ApoEV characterization have not been established in the field. In this study, we will examine the current understanding of ApoEVs, in particular, the ApoEV subtype called apoptotic bodies (ApoBDs). We described that a subset of ApoBDs can be larger than 5 µm and smaller than 1 µm based on flow cytometry and live time-lapse microscopy analysis, respectively. We also described that a subset of ApoBDs can expose a relatively low level of phosphatidylserine on its surface based on annexin A5 staining. Furthermore, we characterized the presence of caspase-cleaved proteins (in particular plasma membrane-associated or cytoplasmic proteins) in samples enriched in ApoBDs. Lastly, using a combination of biochemical-, live imaging- and flow cytometry-based approaches, we characterized the progressive lysis of ApoBDs. Taken together, these results extended our understanding of ApoBDs.