Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Ecotoxicol Environ Saf ; 274: 116202, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38479314

RESUMEN

Many laboratory studies demonstrated that the exposure to microplastics causes testosterone deficiency and spermatogenic impairment in mammals; however, the mechanism underlying this process remains still unclear. In this study, we investigated the effects of polystyrene microplastics (PS-MP) on the proliferation and functionality of cultured Leydig (TM3) and Sertoli (TM4) cells, focusing on the mitochondrial compartment and its association with the endoplasmic reticulum (ER). The in vitro exposure to PS-MP caused a substantial reduction in cellular viability in TM3 and TM4 cells. In TM3 cells PS-MP inhibited the protein levels of StAR and of steroidogenic enzymes 3ß-HSD and 17ß-HSD, and in TM4 cells PS-MP inhibited the protein levels of the androgen receptors other than the activity of lactate dehydrogenase (LDH). PS-MP inhibited the functions of TM3 and TM4, as evidenced by the decrease of the phosphorylation of ERK1/2 and Akt in both cell lines. The oxidative stress caused by PS-MP decreased antioxidant defense in TM3 and TM4 cells, promoting autophagic and apoptotic processes. Furthermore, we found mitochondrial dysfunction and activation of ER stress. It is known that mitochondria are closely associated with ER to form the Mitochondrial-Associated Endoplasmic Reticulum Membranes (MAM), the site of calcium ions transfer as well as of lipid biosynthesis-involved enzymes and cholesterol transport from ER to the mitochondria. For the first time, we studied this aspect in PS-MP-treated TM3 and TM4 cells and MAMs dysregulation was observed. This study is the first to elucidate the intracellular mechanism underlying the effects of PS-MPs in somatic testicular cells, corroborating that PS-MP might be one of the causes of an increase in male infertility through the impairment of steroidogenesis in Leydig cells and of the nurse function of Sertoli cells. Thus, our findings contributed with new information to the mechanism underlying the effects of PS-MP on the male reproductive system.


Asunto(s)
Microplásticos , Plásticos , Ratones , Masculino , Animales , Poliestirenos/toxicidad , Testículo , Retículo Endoplásmico , Mamíferos
2.
Ecotoxicol Environ Saf ; 259: 115067, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37244200

RESUMEN

Cadmium (Cd), by producing oxidative stress and acting as an endocrine disruptor, is known to cause severe testicular injury, documented by histological and biomolecular alterations, such as decreased serum testosterone (T) level and impairment of spermatogenesis. This is the first report on the potential counteractive/preventive action of D-Aspartate (D-Asp), a well-known stimulator of T biosynthesis and spermatogenesis progression by affecting hypothalamic-pituitary-gonadal axis, in alleviating Cd effects in the rat testis. Our results confirmed that Cd affects testicular activity, as documented by the reduction of serum T concentration and of the protein levels of steroidogenesis (StAR, 3ß-HSD, and 17ß-HSD) and spermatogenesis (PCNA, p-H3, and SYCP3) markers. Moreover, higher protein levels of cytochrome C and caspase 3, together with the number of cells positive to TUNEL assay, indicated the intensification of the apoptotic process. D-Asp administered either simultaneously to Cd, or for 15 days before the Cd-treatment, reduced the oxidative stress induced by the metal, alleviating the consequent harmful effects. Interestingly, the preventive action of D-Asp was more effective than its counteractive effect. A possible explanation is that giving D-Asp for 15 days induces its significant uptake in the testes, reaching the concentrations necessary for optimum function. In summary, this report highlights, for the first time, the beneficial role played by D-Asp in both counteracting/preventing the adverse Cd effects in the rat testis, strongly encouraging further investigations to consider the potential value of D-Asp also in improving human testicular health and male fertility.


Asunto(s)
Cadmio , Testículo , Ratas , Humanos , Animales , Masculino , Cadmio/metabolismo , Ácido D-Aspártico/farmacología , Ácido D-Aspártico/metabolismo , Espermatogénesis , Estrés Oxidativo , Testosterona
3.
Gen Comp Endocrinol ; 328: 114104, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35973585

RESUMEN

High-fat diet (HFD) affects the physiology of reproduction in males, and many studies have investigated its detrimental effects. In this study, we investigated the cellular response induced by an HFD in the rat testis, focusing on the mitochondrial compartment. After five weeks of HFD, an increase in the levels of malondialdehyde and of reduced form of glutathione in the rat testis indicated an increase in lipid peroxidation. The results showed an increase in autophagy, apoptosis, and mitochondrial damage in the testis of HFD rats. We found a decrease in the protein expression of mitochondrial antioxidant enzymes, such as catalase and SOD2. Immunohistochemical analysis revealed a decrease in the immunofluorescent signal of SOD2, mainly in the spermatogonia and spermatocytes of HFD rats. HFD-induced mitochondrial damage caused a reduction in mitochondria, as evidenced by a decrease in the protein expression of TOM20, a mitochondrial outer membrane receptor. Consistently, HFD enhanced the levels of the PINK1 protein, a mitophagy marker, suggesting the removal of damaged mitochondria under these conditions. Induction of mtDNA damage and repair was stronger in the HFD rat testis. Finally, we found a decrease in the mtDNA copy number and expression of the POLG enzyme, which is involved in mtDNA replication. In conclusion, our results showed that autophagy and apoptosis are activated in the testis of HFD rats as a survival strategy to cope with oxidative stress. Furthermore, HFD-induced oxidative stress affects the mitochondria, inducing mtDNA damage and mtDNA copy number reduction. Mitophagy and mtDNA repair mechanisms might represent a mitochondrial adaptive response.


Asunto(s)
Antioxidantes , Dieta Alta en Grasa , Animales , Antioxidantes/metabolismo , Autofagia/genética , Catalasa/metabolismo , Catalasa/farmacología , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , ADN Mitocondrial/farmacología , Glutatión/metabolismo , Masculino , Malondialdehído/metabolismo , Estrés Oxidativo , Proteínas Quinasas/metabolismo , Proteínas Quinasas/farmacología , Ratas , Testículo/metabolismo
4.
Amino Acids ; 52(9): 1263-1273, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32930873

RESUMEN

D-Aspartate, D-serine and D-alanine are a regular occurrence in mammalian endocrine tissues, though in amounts varying with the type of gland. The pituitary gland, pineal gland, thyroid, adrenal glands and testis contain relatively large amounts of D-aspartate in all species examined. D-alanine is relatively abundant in the pituitary gland and pancreas. High levels of D-serine characterize the hypothalamus. D-leucine, D-proline and D-glutamate are generally low. The current knowledge of physiological roles of D-amino acids in endocrine tissues is far from exhaustive, yet the topic is attracting increasing interest because of its potential in pharmacological application. D-aspartate is known to act at all levels of the hypothalamus-pituitary-testis axis, playing a key role in reproductive biology in several vertebrate classes. An involvement of D-amino acids in the endocrine function of the pancreas is emerging. D-Aspartate has been immunolocalized in insulin-containing secretory granules in INS-1 E clonal ß cells and is co-secreted with insulin by exocytosis. Specific immunolocalization of D-alanine in pituitary ACTH-secreting cells and pancreatic ß-cells suggests that this amino acid participates in blood glucose regulation in mammals. By modulating insulin secretion, D-serine probably participates in the control of systemic glucose metabolism by modulating insulin secretion. We anticipate that future investigation will significantly increase the functional repertoire of D-amino acids in homeostatic control.


Asunto(s)
Aminoácidos/metabolismo , Exocitosis , Glucosa/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Animales , Mamíferos
5.
Gen Comp Endocrinol ; 298: 113578, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32739437

RESUMEN

This issue is dedicated to the late Professor Giovanni Chieffi, and this article is an overview of the research on Comparative Endocrinology of reproduction using Rana esculenta (alias Pelophylax esculentus) as a model system. Starting from the early 1970s till today, a large quantity of work have been conducted both in the fields of experimental endocrinology and in the definition of the diffuse neuroendocrine system, with a major focus on the increasing role of regulatory peptides. The various aspects investigated concerned the histological descriptions of principal endocrine glands of the hypothalamic-pituitary-gonadal (HPG) axis, the localization and distribution in the HPG of several different substances (i.e. neurosteroids, hypothalamic peptide hormones, pituitary gonadotropins, gonadal sex steroids, and other molecules), the determination of sex hormone concentrations in both serum and tissues, the hormone manipulations, as well as the gene and protein expression of steroidogenic enzymes and their respective receptors. All together these researches, often conducted considering different periods of the annual reproductive cycle of the green frog, allowed to understand the mechanism of cascade control/regulation of the HPG axis of R. esculenta, characterizing the role of different hormones in the two sexes, and testing the hypotheses about the function of single hormones in different target organs. It becomes evident from the review that, in their simplest form, several features of this species are specular as compared to those of other vertebrate species and that reproduction in this frog species is either under endogenous multi-hormonal control or by a wide array of different factors. Our excursus of this research, spanning almost five decades, shows that R. esculenta has been intensively and successfully used as an animal model in reproductive endocrinology as well as several field studies such as those involving environmental concerns that focus on the effects of endocrine disruptors and other environmental contaminants.


Asunto(s)
Endocrinología , Rana clamitans/fisiología , Reproducción/fisiología , Investigación , Animales , Ambiente , Caracteres Sexuales
6.
Gen Comp Endocrinol ; 297: 113548, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32679156

RESUMEN

The Harderian gland (HG) is an exocrine gland located within the eye socket in a variety of tetrapods. During the 1980s and 1990s the HG elicited great interest in the scientific community due to its morphological and functional complexity, and from a phylogenetic point of view. A comparative approach has contributed to a better understanding of its physiology. Whereas the chemical nature of its secretions (mucous, serous or lipids) varies between different groups of tetrapods, the lipids represent the more common component among different species. Indeed, besides being an accessory to lubricate the nictitating membrane, the lipids may have a pheromonal function. Porphyrins and melatonin secretion is a feature of the rodent HG. The porphyrins, being phototransducers, could modulate HG melatonin production. The melatonin synthesis suggests an involvement of the HG in the retinal-pineal axis. Finally, StAR protein and steroidogenic enzyme activities in the rat HG suggests that the gland contributes to steroid hormone synthesis. Over the past twenty years, much has become known on the hamster (Mesocricetus auratus) HG, unique among rodents in displaying a remarkable sexual dimorphism concerning the contents of porphyrins and melatonin. Mainly for this reason, the hamster HG has been used as a model to compare, under normal conditions, the physiological oxidative stress between females (strong) and males (moderate). Androgens are responsible for the sexual dimorphism in hamster and they are known to control the HG secretory activity in different species. Furthermore, HG is a target of pituitary, pineal and thyroid hormones. This review offers a comparative panorama of the endocrine activity of the HG as well as the hormonal control of its secretory activity, with a particular emphasis on the sex dimorphic aspects of the hamster HG.


Asunto(s)
Sistema Endocrino/fisiología , Glándula de Harder/fisiología , Hormonas/metabolismo , Animales , Femenino , Glándula de Harder/ultraestructura , Masculino , Mesocricetus/fisiología , Filogenia , Caracteres Sexuales
7.
Int J Mol Sci ; 21(22)2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33218144

RESUMEN

The endogenous amino acids serine and aspartate occur at high concentrations in free D-form in mammalian organs, including the central nervous system and endocrine glands. D-serine (D-Ser) is largely localized in the forebrain structures throughout pre and postnatal life. Pharmacologically, D-Ser plays a functional role by acting as an endogenous coagonist at N-methyl-D-aspartate receptors (NMDARs). Less is known about the role of free D-aspartate (D-Asp) in mammals. Notably, D-Asp has a specific temporal pattern of occurrence. In fact, free D-Asp is abundant during prenatal life and decreases greatly after birth in concomitance with the postnatal onset of D-Asp oxidase expression, which is the only enzyme known to control endogenous levels of this molecule. Conversely, in the endocrine system, D-Asp concentrations enhance after birth during its functional development, thereby suggesting an involvement of the amino acid in the regulation of hormone biosynthesis. The substantial binding affinity for the NMDAR glutamate site has led us to investigate the in vivo implications of D-Asp on NMDAR-mediated responses. Herein we review the physiological function of free D-Asp and of its metabolizing enzyme in regulating the functions of the brain and of the neuroendocrine system based on recent genetic and pharmacological human and animal studies.


Asunto(s)
Encéfalo/metabolismo , Ácido D-Aspártico/metabolismo , Sistemas Neurosecretores/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , D-Aspartato Oxidasa/metabolismo , Hormona del Crecimiento/biosíntesis , Humanos , N-Metilaspartato/metabolismo , Especificidad por Sustrato
8.
J Cell Biochem ; 120(7): 11044-11055, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30762900

RESUMEN

Excitatory amino acids (EAAs) are found present in the nervous and reproductive systems of animals. Numerous studies have demonstrated a regulatory role for Glutamate (Glu), d-aspartate ( d-Asp) and N-methyl- d-aspartate (NMDA) in the control of spermatogenesis. EAAs are able to stimulate the Glutamate receptors, including the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR). Here in, we assess expression of the main AMPAR subunits, GluA1 and GluA2/3, in the mouse testis and in spermatogonial GC-1 cells. The results showed that both GluA1 and GluA2/3 were localized in mouse testis prevalently in spermatogonia. The subunit GluA2/3 was more highly expressed compared with GluA1 in both the testis and the GC-1 cells. Subsequently, GC-1 cells were incubated with medium containing l-Glu, d-Glu, d-Asp or NMDA to determine GluA1 and GluA2/3 expressions. At 30 minutes and 2 hours of incubation, EAA-treated GC-1 cells showed significantly higher expression levels of both GluA1 and GluA2/3. Furthermore, p-extracellular signal-regulated kinase (ERK), p-Akt, proliferating cell nuclear antigen (PCNA), and Aurora B expressions were assayed in l-Glu-, d-Glu-, and NMDA-treated GC-1 cells. At 30 minutes and 2 hours of incubation, treated GC-1 cells showed significantly higher expression levels of p-ERK and p-Akt. A consequent increase of PCNA and Aurora B expressions was induced by l-Glu and NMDA, but not by d-Glu. Our study demonstrates a direct effect of the EAAs on spermatogonial activity. In addition, the increased protein expression levels of GluA1 and GluA2/3 in EAA-treated GC-1 cells suggest that EAAs could activate ERK and Akt pathways through the AMPAR. Finally, the increased PCNA and Aurora B levels may imply an enhanced proliferative activity.

9.
J Exp Zool B Mol Dev Evol ; 332(6): 198-209, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31433565

RESUMEN

The quail Coturnix coturnix is a seasonal breeder with a physiological switch on/off of gonadic activity. Photoperiod and temperature are the major environmental factors regulating the spermatogenesis. To more thoroughly comprehend the steroidogenic pathways that govern the seasonal reproductive cycle, we have investigated the localization of StAR protein and steroidogenic enzymes (3ß-HSD, 17ß-HSD, P450 aromatase, and 5α-Red) as well as androgen and estrogen levels, in the testis of reproductive and nonreproductive quails. We demonstrated that StAR, 3ß-HSD, 17ß-HSD, P450 aromatase, and 5α-Red were always present in the somatic (Leydig and Sertoli cells) and germ cells (spermatogonia, spermatocytes I and II, spermatids, and spermatozoa). In addition, by western blot analysis, we demonstrated that 17ß-HSD, P450 aromatase, and 5α-Red showed the highest expression levels during the reproductive testis compared with nonreproductive one. Accordingly, we also found that during the reproductive phase the highest titres of testosterone, 17ß-estradiol, and 5α-dihydrotestosterone are recorded. In conclusion, our findings demonstrated that in C. coturnix: (a) both somatic and germ cells are involved in the local synthesis of sex hormones; (b) 17ß-HSD, P450 aromatase, and 5α-Red expressions, as well as testicular androgens and estrogens, increased in reproductive quail testis. This study strongly indicates that the steroidogenic process in quail testis exhibits seasonal changes with the promotion of both androgenic and estrogenic pathways in the reproductive period, suggesting their synergic mechanism in the spermatogenesis regulation.


Asunto(s)
Coturnix/metabolismo , Hormonas Esteroides Gonadales/metabolismo , Fragmentos de Péptidos/metabolismo , Fosfoproteínas/metabolismo , Estaciones del Año , Testículo/enzimología , Animales , Masculino , Testículo/citología , Testículo/metabolismo
10.
Reproduction ; 158(4): 357-367, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31398714

RESUMEN

D-Aspartate (D-Asp) is an endogenous amino acid that plays a central role in the development of the central nervous system (CNS) and functioning of the neuroendocrine system. In line with its functions, it is abundantly present in the CNS and reproductive systems of vertebrates and invertebrates. It has been implicated in the biosynthesis and/or secretion of hormones and factors that are involved in various reproductive functions, such as GnRH from the hypothalamus and testosterone from the testis. We conducted an in vivo study consisting of acute (i.p. injection of 2 µmol/g body weight) and chronic (15 days drinking solution) administration of D-Asp to adult rats to understand the signaling pathways elicited by D-Asp in the rat testis. We found that D-Asp upregulated the expression of prolyl endopeptidase (PREP), a serine protease having a pivotal role in the regulation of mammalian spermatogenesis and spermiogenesis. Immunofluorescence analysis revealed its overexpression in Leydig cells, Sertoli cells and spermatogonia. Moreover, PREP was found to co-localize with GluA2/3, an AMPA receptor subunit, whose protein expression also increased after D-Asp treatments. Finally, we found a significant increase in ERK and Akt activities in the testis of rats treated with D-Asp. Since PREP is known to be involved in regulating GnRH levels and in germ cell differentiation, we hypothesize D-Asp to play a pivotal role in regulating hormone homeostasis and spermatogenesis through activation of PREP, AMPAR, ERK and Akt.


Asunto(s)
Ácido D-Aspártico/administración & dosificación , Regulación de la Expresión Génica/efectos de los fármacos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores AMPA/metabolismo , Serina Endopeptidasas/metabolismo , Testículo/metabolismo , Administración Oral , Animales , Ácido D-Aspártico/farmacología , Masculino , Prolil Oligopeptidasas , Ratas , Ratas Wistar , Testículo/efectos de los fármacos
11.
Mol Reprod Dev ; 86(10): 1324-1332, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31111596

RESUMEN

It is a widely held belief that environmental contaminants contribute to the decline of amphibian populations. By spending most of their early life in water and later stages on the land, amphibians face a constant risk of exposure to pesticides and other chemical pollutants in both aquatic and terrestrial environments. This review presents an overview of the studies carried out in Italian amphibians to highlight hazardous effects of bioaccumulation of chemical pollutants in juveniles and adults in various contaminated environments. Further, the studies in the laboratory setting assessing the effects of chemical pollutants on reproductive and developmental processes are reported. These studies and their relative references have been summarized in a tabular form. Three prominent contaminant groups were identified: herbicides, insecticides, and fungicides; and only a few works reported the effects of other chemical pollutants. Each pollutant group has been delegated to a section. All through the literature survey, it is seen that interest in this topic in Italy is very recent and sparse, where only a few anuran and caudata species and only some chemical pollutants have been studied.


Asunto(s)
Anfibios , Contaminantes Ambientales/toxicidad , Plaguicidas/toxicidad , Reproducción/efectos de los fármacos , Anfibios/embriología , Anfibios/crecimiento & desarrollo , Anfibios/fisiología , Animales , Italia , Estadios del Ciclo de Vida/efectos de los fármacos
12.
Zygote ; 27(3): 160-165, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31060637

RESUMEN

SummaryProlyl endopeptidase (PREP) is a post-proline cleaving enzyme. It is involved in the regulation of multiple inositol polyphosphate phosphatase activity implicated in the pathway of inositol 1,4,5-trisphosphate, resulting in the modulation of cytosolic Ca2+ levels. Besides its peptidase activity, PREP was identified as a binding partner of tubulin, suggesting that it may participate in microtubule-associate processes. In this paper, we evaluated the expression of PREP mRNA and protein by polymerase chain reaction and western blot analyses and its co-localization with tubulin by immunofluorescence in adult mouse seminal vesicles. We showed that both proteins are cytoplasmic: tubulin is localized at the apical half part of the cell, while PREP has a more diffuse localization, showing a prominent distribution at the apical cytoplasm. These findings support our hypothesis of a specific role for PREP in cytoskeletal rearrangement that occurs during the exocytosis of secretory vesicles, and in particular its association with tubulin filaments. Moreover, it may regulate Ca2+ levels, and promote the final step of vesicular exocytosis, namely the fusion of the vesicles with the plasma membrane. These results strongly suggest that there is a pivotal role for PREP in vesicle exocytosis, as well as in the physiology of mouse seminal vesicles.


Asunto(s)
Exocitosis , Vesículas Seminales/enzimología , Serina Endopeptidasas/metabolismo , Tubulina (Proteína)/metabolismo , Animales , Calcio/metabolismo , Citoplasma/metabolismo , Citoesqueleto/metabolismo , Masculino , Ratones Endogámicos C57BL , Microtúbulos/metabolismo , Prolil Oligopeptidasas , Unión Proteica , Serina Endopeptidasas/genética
13.
Molecules ; 24(8)2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30991700

RESUMEN

Food-waste is produced throughout all the food supply chain, with a large part already achieved at farm level. In fact, fruits and vegetables, which do not satisfy aesthetic demands, cannot be marketed, but their recovery could favour their valorisation for the obtainment of highly qualified goods. In this context, faulty zucchini fruits (cultivar 'Lungo Fiorentino'), intended for disposal, were rescued as effective, inexpensive and bio-sustainable source for cosmeceutical purposes. Zucchini fruits underwent extraction and fractionation to obtain ZLF-O and ZLF-A extracts, which were chemically characterized by UHPLC-HRMS. ZLF-A extract, rich in flavonols and flavones, scavenged massively DPPH• and ABTS•+, and was not cytotoxic at doses up to 200 µ g/mL. Thus, ZLF-A was incorporated into a base cream formula. Zucchini-based emulsion was deeply screened for its antiradical properties and cytotoxicity towards human keratinocytes and fibroblasts. ZLF-A-enriched cream, whose chemical stability was assessed over time and mimicking different storage conditions, was further tested on reconstructed epidermis disks (EpiskinTM). The recovery of valuable chemical substances from zucchini agro-food waste, complying with the principles of valorisation and sustainable development, can represent a new market force for local farmers. Data acquired were eager to convey a suitable reuse of nutraceuticals rich zucchini waste.


Asunto(s)
Cosmecéuticos/análisis , Cucurbita/química , Frutas/química , Metaboloma , Cromatografía Líquida de Alta Presión , Cosmecéuticos/química , Cucurbita/metabolismo , Frutas/metabolismo
14.
J Exp Zool B Mol Dev Evol ; 330(1): 33-40, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29319231

RESUMEN

Relaxin (RLN) and insulin (INSL)-like peptides are member of the INSL/RLN superfamily, which are encoded by seven genes in humans and can activate the G-protein coupled receptor RXFP 1-4. These peptides evolved from a common ancestor, RLN3-like gene. Two rounds of whole genome duplication (WGD) in early vertebrate evolution, together with an additional WGD in the teleost lineage, caused an expansion of RLN genes set in the genome of Danio rerio. In particular, six RLN genes are present: a single copy of rln and insl3 genes, and two paralogs for the rln3 gene (rln3a and rln3b), and the insl5 gene (insl5a and insl5b). We have already reported the presence of rln3a and rln3b genes in the developing zebrafish brain, as well as the expression of rln gene in the developing zebrafish brain and extraneural territories, such as thyroid gland and pancreas. Here, we report for the first time the expression of the two parologs genes for insl5, insl5a, and insl5b in D. rerio embryonic development. The corresponding transcripts of both the paralogs are present in all embryonic stages analyzed by RT-qPCR. In situ hybridization analyses showed a restricted signal in intestinal cells and the pancreatic region at 72 hpf for insl5a, while at 96 hpf both genes are expressed in specific intestinal cells. Furthermore, in adult zebrafish intestine tissue, in situ hybridation experiments showed that insl5a transcript is specifically localized in the goblet cells, while insl5b transcript is in enteroendocrine cells. These data revealed a high degree of gene expression pattern conservation for such genes in vertebrate evolution.


Asunto(s)
Desarrollo Embrionario/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de Pez Cebra/metabolismo , Secuencia de Aminoácidos , Animales , Biología Computacional , Insulina , Isoformas de Proteínas , Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Pez Cebra , Proteínas de Pez Cebra/genética
15.
Gen Comp Endocrinol ; 246: 226-232, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28027903

RESUMEN

The brain of amphibians contains all the key enzymes of steroidogenesis and has a high steroidogenic activity. In seasonally-breeding amphibian species brain steroid levels fluctuate synchronously with the reproductive cycle. Here we report a study of gene expression of StAR protein, key steroidogenic enzymes and sex hormone receptors in the telencephalon (T) and diencephalon-mesencephalon (D-M) of male and female reproductive and post-reproductive Pelophylax esculentus, a seasonally breeding anuran amphibian. Significant differences in gene expression were observed between (a) the reproductive and post-reproductive phase, (b) the two brain regions and (c) male and female frogs. During the reproductive phase, star gene expression increased in the male (both T and D-M) but not in the female brain. Seasonal fluctuations in expression levels of hsd3b1, hsd17b1, srd5a1 and cyp19a1 genes for neurosteroidogenic enzymes occurred in D-M region of both sexes, with the higher levels in reproductive period. Moreover, the D-M region generally showed higher levels of gene expression than the T region in both sexes. Gene expression was higher in females than males for most genes, suggesting higher neurosteroid production in female brain. Seasonal and sex-linked changes were also observed in gene expression for androgen (ar) and estrogen (esr1, esr2) receptors, with the males showing the highest ar levels in reproductive phase and the highest esr1 and esr2 levels in post-reproductive phase; in contrast, females showed the maximum expression for all three genes in reproductive phase. The results are the first evidence for seasonal changes and sexual dimorphism of gene expression of the neurosteroidogenic pathway in amphibians.


Asunto(s)
Anuros/metabolismo , Aromatasa/genética , Regulación de la Expresión Génica , Fosfoproteínas/genética , Receptores Androgénicos/genética , Receptores de Estrógenos/genética , Estaciones del Año , Animales , Encéfalo/metabolismo , Diencéfalo/metabolismo , Femenino , Hormonas Esteroides Gonadales/metabolismo , Masculino , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducción , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Caracteres Sexuales , Factor Esteroidogénico 1/genética , Telencéfalo/metabolismo
16.
J Cell Physiol ; 231(2): 490-5, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26189884

RESUMEN

D-aspartate (D-Asp) is an endogenous amino acid present in vertebrate tissues, with particularly high levels in the testis. In vivo studies indicate that D-Asp indirectly stimulates spermatogenesis through the hypothalamic-pituitary-gonadal axis. Moreover, in vitro studies have demonstrated that D-Asp up-regulates testosterone production in Leydig cells by enhancing expression of the steroidogenic acute regulatory protein. In this study, a cell line derived from immortalized type-B mouse spermatogonia retaining markers of mitotic germ cells (GC-1) was employed to explore more direct involvement of D-Asp in spermatogenesis. Activity and protein expression of markers of cell proliferation were determined at intervals during incubation in D-Asp-containing medium. D-Asp induced phosphorylation of ERK and Akt proteins, stimulated expression of PCNA and Aurora B, and enhanced mRNA synthesis and protein expression of P450 aromatase and protein expression of Estrogen Receptor ß (ERß). These results are the first demonstration of a direct effect of D-Asp on spermatogonial mitotic activity. Considering that spermatogonia express the NR1 subunit of the N-Methyl-D-Aspartic Acid receptor (NMDAR), we suggest that their response to D-Asp depends on NMDAR-mediated activation of the ERK and Akt pathways and is further enhanced by activation of the P450 aromatase/ERß pathway.


Asunto(s)
Ácido D-Aspártico/metabolismo , Ácido D-Aspártico/farmacología , Espermatogénesis/efectos de los fármacos , Espermatogénesis/fisiología , Espermatogonias/citología , Espermatogonias/efectos de los fármacos , Animales , Aromatasa/genética , Aromatasa/metabolismo , Aurora Quinasa B/metabolismo , Línea Celular , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Proliferación Celular/fisiología , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Modelos Biológicos , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Espermatogénesis/genética , Espermatogonias/metabolismo
17.
Artículo en Inglés | MEDLINE | ID: mdl-26517944

RESUMEN

Pituitary adenylate cyclase-activating peptide (PACAP) is a neuropeptide that in mammalian testis is involved in the control of testosterone and 17ß-estradiol synthesis. A similar involvement was recently postulated in the testis of a nonmammalian vertebrate, the wall lizard Podarcis sicula. Indeed, we reported the presence of PACAP and its receptors throughout the reproductive cycle within both germ and somatic cells. Now, we investigated the effects of PACAP on steroidogenesis in significant periods of Podarcis reproductive cycle: winter stasis, reproductive period and summer stasis. Using different in vitro treatments, in the absence or presence of receptor antagonists, we demonstrated that in P. sicula testis PACAP is involved in the control of testosterone and 17ß-estradiol production. In particular we demonstrated that treatment with PACAP induced a testosterone increase only in stasis periods (winter and summer stasis); differently they induced a 17ß-estradiol production in all periods analyzed (summer stasis, winter stasis and reproductive period).


Asunto(s)
Estradiol/biosíntesis , Lagartos/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Testículo/metabolismo , Testosterona/biosíntesis , Animales , Masculino , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/antagonistas & inhibidores , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/antagonistas & inhibidores , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo , Reproducción/efectos de los fármacos , Estaciones del Año , Testículo/efectos de los fármacos
18.
Int J Mol Sci ; 17(7)2016 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-27428949

RESUMEN

A bulk of evidence suggests that d-aspartate (d-Asp) regulates steroidogenesis and spermatogenesis in vertebrate testes. This review article focuses on intracellular signaling mechanisms elicited by d-Asp possibly via binding to the N-methyl-d-aspartate receptor (NMDAR) in both Leydig cells, and spermatogonia. In Leydig cells, the amino acid upregulates androgen production by eliciting the adenylate cyclase-cAMP and/or mitogen-activated protein kinase (MAPK) pathways. d-Asp treatment enhances gene and protein expression of enzymes involved in the steroidogenic cascade. d-Asp also directly affects spermatogonial mitotic activity. In spermatogonial GC-1 cells, d-Asp induces phosphorylation of MAPK and AKT serine-threonine kinase proteins, and stimulates expression of proliferating cell nuclear antigen (PCNA) and aurora kinase B (AURKB). Further stimulation of spermatogonial GC-1 cell proliferation might come from estradiol/estrogen receptor ß (ESR2) interaction. d-Asp modulates androgen and estrogen levels as well as the expression of their receptors in the rat epididymis by acting on mRNA levels of Srd5a1 and Cyp19a1 enzymes, hence suggesting involvement in spermatozoa maturation.


Asunto(s)
Ácido D-Aspártico/farmacología , Células Intersticiales del Testículo/efectos de los fármacos , Espermatogonias/efectos de los fármacos , Animales , Humanos , Masculino , Ratas
19.
Amino Acids ; 46(8): 1805-18, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24839076

RESUMEN

Free D-aspartate (D-Asp) occurs in substantial amounts in glandular tissues. This paper reviews the existing work on D-Asp in vertebrate exocrine and endocrine glands, with emphasis on functional roles. Endogenous D-Asp was detected in salivary glands. High D-Asp levels in the parotid gland during development suggest an involvement of the amino acid in the regulation of early developmental phases and/or differentiation processes. D-Asp has a prominent role in the Harderian gland, where it elicits exocrine secretion through activation of the ERK1/2 pathway. Interestingly, the increase in NOS activity associated with D-Asp administration in the Harderian gland suggests a potential capability of D-Asp to induce vasodilatation. In mammals, an increase in local concentrations of D-Asp facilitates the secretion of anterior pituitary hormones, i.e., PRL, LH and GH, whereas it inhibits the secretion of POMC/α-MSH from the intermediate pituitary and of oxytocin from the posterior pituitary. D-Asp also acts as a negative regulator for melatonin synthesis in the pineal gland. Further, D-Asp can stereo-specifically modulate the production of sex steroids, thus taking part in the endocrine control of reproductive activity. Although D-Asp receptors remain to be characterized, gene expression of NR1 and NR2 subunits of NMDAr responds to D-Asp in the testis.


Asunto(s)
Ácido D-Aspártico/farmacocinética , Glándulas Endocrinas/metabolismo , Glándulas Exocrinas/metabolismo , Isomerasas de Aminoácido/metabolismo , Animales , D-Aspartato Oxidasa/metabolismo , Glándula de Harder/metabolismo , Humanos , Melatonina/biosíntesis , Glándula Parótida/metabolismo , Glándula Pineal/metabolismo , Adenohipófisis Porción Intermedia/metabolismo , Neurohipófisis/metabolismo , Hormonas Adenohipofisarias/metabolismo , Glándulas Salivales/metabolismo
20.
Cells ; 13(6)2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38534366

RESUMEN

Mitochondria-Associated Endoplasmic Reticulum Membranes (MAMs) mediate the communication between the Endoplasmic Reticulum (ER) and the mitochondria, playing a fundamental role in steroidogenesis. This study aimed to understand how D-aspartate (D-Asp), a well-known stimulator of testosterone biosynthesis and spermatogenesis, affects the mechanism of steroidogenesis in rat testes. Our results suggested that D-Asp exerts this function through MAMs, affecting lipid trafficking, calcium signaling, ER stress, and mitochondrial dynamics. After 15 days of oral administration of D-Asp to rats, there was an increase in both antioxidant enzymes (SOD and Catalase) and in the protein expression levels of ATAD3A, FACL4, and SOAT1, which are markers of lipid transfer, as well as VDAC and GRP75, which are markers of calcium signaling. Additionally, there was a decrease in protein expression levels of GRP78, a marker of aging that counteracts ER stress. The effects of D-Asp on mitochondrial dynamics strongly suggested its active role as well. It induced the expression levels of proteins involved in fusion (MFN1, MFN2, and OPA1) and in biogenesis (NRF1 and TFAM), as well as in mitochondrial mass (TOMM20), and decreased the expression level of DRP1, a crucial mitochondrial fission marker. These findings suggested D-Asp involvement in the functional improvement of mitochondria during steroidogenesis. Immunofluorescent signals of ATAD3A, MFN1/2, TFAM, and TOMM20 confirmed their localization in Leydig cells showing an intensity upgrade in D-Asp-treated rat testes. Taken together, our results demonstrate the involvement of D-Asp in the steroidogenesis of rat testes, acting at multiple stages of both MAMs and mitochondrial dynamics, opening new opportunities for future investigation in other steroidogenic tissues.


Asunto(s)
Dinámicas Mitocondriales , Membranas Mitocondriales , Masculino , Ratas , Animales , Membranas Mitocondriales/metabolismo , Ácido D-Aspártico/farmacología , Testículo/metabolismo , Regulación hacia Arriba , Ácido Aspártico , Mitocondrias/metabolismo , Retículo Endoplásmico/metabolismo , Lípidos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA