Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Sci Rep ; 10(1): 16471, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-33020502

RESUMEN

SARS-CoV-2 has a zoonotic origin and was transmitted to humans via an undetermined intermediate host, leading to infections in humans and other mammals. To enter host cells, the viral spike protein (S-protein) binds to its receptor, ACE2, and is then processed by TMPRSS2. Whilst receptor binding contributes to the viral host range, S-protein:ACE2 complexes from other animals have not been investigated widely. To predict infection risks, we modelled S-protein:ACE2 complexes from 215 vertebrate species, calculated changes in the energy of the complex caused by mutations in each species, relative to human ACE2, and correlated these changes with COVID-19 infection data. We also analysed structural interactions to better understand the key residues contributing to affinity. We predict that mutations are more detrimental in ACE2 than TMPRSS2. Finally, we demonstrate phylogenetically that human SARS-CoV-2 strains have been isolated in animals. Our results suggest that SARS-CoV-2 can infect a broad range of mammals, but few fish, birds or reptiles. Susceptible animals could serve as reservoirs of the virus, necessitating careful ongoing animal management and surveillance.


Asunto(s)
Peptidil-Dipeptidasa A/química , Filogenia , Glicoproteína de la Espiga del Coronavirus/química , Enzima Convertidora de Angiotensina 2 , Animales , Betacoronavirus/clasificación , Betacoronavirus/genética , Humanos , Mamíferos , Simulación del Acoplamiento Molecular , Mutación , Peptidil-Dipeptidasa A/clasificación , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Unión Proteica , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/metabolismo
2.
FEBS Lett ; 379(2): 117-21, 1996 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-8635574

RESUMEN

A novel myb-like gene (Atmyb5) has been isolated from a genomic library of Arabidopsis thaliana. The gene contains a single intron in the region coding for the Myb domains. The Myb domains are highly homologous to other animal and plant Myb proteins. Arabidopsis plants transgenic for a chimeric Atmyb5 promoter/GUS gene expressed the enzyme in a developmentally controlled and tissue specific manner. The GUS activity was detected in developing leaf trichomes, stipules, epidermal cells on the margins of young rosette and cauline leaves, and in immature seeds. Atmyb5 mRNA appears between fertilization and the 16 cell stage of embryo development and persists beyond the heart stage.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis/genética , Genes de Plantas , Oncogenes , Proteínas de Plantas/biosíntesis , Secuencia de Aminoácidos , Animales , Arabidopsis/citología , Arabidopsis/fisiología , Secuencia de Bases , Secuencia Conservada , Cartilla de ADN , Biblioteca Genómica , Glucuronidasa/biosíntesis , Datos de Secuencia Molecular , Hojas de la Planta , Proteínas de Plantas/química , Proteínas de Plantas/genética , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas c-myb , ARN Mensajero/análisis , ARN Mensajero/biosíntesis , Proteínas Recombinantes de Fusión/biosíntesis , Secuencias Repetitivas de Ácidos Nucleicos , Mapeo Restrictivo , Semillas , Homología de Secuencia de Aminoácido , Transactivadores/química
3.
Science ; 323(5914): 583; author reply 583, 2009 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-19179513

RESUMEN

Kulp et al. (Reports, 15 August 2008, p. 967) described a bacterium able to photosynthetically oxidize arsenite [As(III)] via arsenate [As(V)] reductase functioning in reverse. Based on their phylogenetic analysis of As(V) reductase, they proposed that this enzyme was responsible for the anaerobic oxidation of As(III) in the Archean. We challenge this proposition based on paleogeochemical, bioenergetic, and phylogenetic arguments.


Asunto(s)
Arseniato Reductasas/metabolismo , Arsenitos/metabolismo , Bacterias/metabolismo , Biopelículas , Manantiales de Aguas Termales/microbiología , Fotosíntesis , California , Oxidación-Reducción , Filogenia
4.
J Bacteriol ; 180(16): 4093-101, 1998 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-9696755

RESUMEN

The mechanisms by which gene products inhibit the conjugal transfer of IncP plasmids (e.g., RP1) have been little studied. We have isolated and characterized one such gene, fipA (624 nucleotides), from the SmaI (14.8 kb)-AatII (15.6 kb) region of pKM101(IncN). This gene, which is also conserved in other IncN plasmids, is transcribed in an anticlockwise direction, probably as part of a transfer operon that includes traHI. The FipA protein (24 kDa) appears to be cytoplasmic and, when expressed from a multicopy plasmid, retards the growth of Escherichia coli WP2. The mode of action of fipA was compared with that of the apparently unrelated pifC gene from F(IncFI). Both genes inhibit the transfer of IncPalpha and IncPbeta plasmids but to different degrees. They also inhibit the mobilization of RSF1010 (which requires the RP1 pilus genes and traG) but not of CloDF13 (which encodes a traG homolog). Evidence that traG was the specific target of inhibition was obtained in an artificial system in which cloned traG was used to enhance RSF1010 mobilization via the N pilus system. Such enhancement did not occur in the presence of fipA or pifC. The availability of an in vivo assay of PifC enabled us to show that F pif operon expression increased in cells carrying F'lac and traG, but only if the traG coding sequence was intact. This finding suggested that conjugal inhibition of RP1 was most likely due to a PifC-TraG protein interaction. On phenotypic grounds inhibition of traG by fipA is also likely to occur posttranscriptionally. Whether or not the selection of traG as the inhibition target is an evolutionary tactic to limit the spread of P plasmids, we anticipate that fipA and pifC will prove useful in further investigation of the conjugal roles of traG and its homologs.


Asunto(s)
Proteínas Bacterianas/genética , Conjugación Genética , Proteínas de Escherichia coli , Escherichia coli/genética , Factor F/genética , Proteínas de la Membrana , Factores de Iniciación de Péptidos/genética , Factores R/genética , Clonación Molecular , Escherichia coli/metabolismo , Factor 3 de Iniciación Eucariótica , Genes Bacterianos , Factores de Iniciación de Péptidos/metabolismo
5.
Appl Environ Microbiol ; 66(1): 92-7, 2000 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-10618208

RESUMEN

A previously unknown chemolithoautotrophic arsenite-oxidizing bacterium has been isolated from a gold mine in the Northern Territory of Australia. The organism, designated NT-26, was found to be a gram-negative motile rod with two subterminal flagella. In a minimal medium containing only arsenite as the electron donor (5 mM), oxygen as the electron acceptor, and carbon dioxide-bicarbonate as the carbon source, the doubling time for chemolithoautotrophic growth was 7.6 h. Arsenite oxidation was found to be catalyzed by a periplasmic arsenite oxidase (optimum pH, 5.5). Based upon 16S rDNA phylogenetic sequence analysis, NT-26 belongs to the Agrobacterium/Rhizobium branch of the alpha-Proteobacteria and may represent a new species. This recently discovered organism is the most rapidly growing chemolithoautotrophic arsenite oxidizer known.


Asunto(s)
Alphaproteobacteria/aislamiento & purificación , Arsenitos/metabolismo , Oro , Bacterias Gramnegativas Quimiolitotróficas/aislamiento & purificación , Minería , Alphaproteobacteria/clasificación , Alphaproteobacteria/fisiología , Medios de Cultivo , ADN Bacteriano/genética , ADN Ribosómico/genética , Bacterias Gramnegativas Quimiolitotróficas/clasificación , Bacterias Gramnegativas Quimiolitotróficas/fisiología , Datos de Secuencia Molecular , Oxidación-Reducción , Filogenia , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
6.
Arch Microbiol ; 173(1): 49-57, 2000 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-10648104

RESUMEN

Two sulfate-reducing bacteria, which also reduce arsenate, were isolated; both organisms oxidized lactate incompletely to acetate. When using lactate as the electron donor, one of these organisms, Desulfomicrobium strain Ben-RB, rapidly reduced (doubling time = 8 h) 5.1 mM arsenate at the same time it reduced sulfate (9.6 mM). Sulfate reduction was not inhibited by the presence of arsenate. Arsenate could act as the terminal electron acceptor in minimal medium (doubling time = 9 h) in the absence of sulfate. Arsenate was reduced by a membrane-bound enzyme that is either a c-type cytochrome or is associated with such a cytochrome; benzyl-viologen-dependent arsenate reductase activity was greater in cells grown with arsenate/sulfate than in cells grown with sulfate only. The second organism, Desulfovibrio strain Ben-RA, also grew (doubling time = 8 h) while reducing arsenate (3.1 mM) and sulfate (8.3 mM) concomitantly. No evidence was found, however, that this organism is able to grow using arsenate as the terminal electron acceptor. Instead, it appears that arsenate reduction by the Desulfovibrio strain Ben-RA is catalyzed by an arsenate reductase that is encoded by a chromosomally-borne gene shown to be homologous to the arsC gene of the Escherichia coli plasmid, R773 ars system.


Asunto(s)
Arseniatos/metabolismo , Desulfovibrio/metabolismo , Bombas Iónicas , Complejos Multienzimáticos , Sulfatos/metabolismo , Adenosina Trifosfatasas/metabolismo , ATPasas Transportadoras de Arsenitos , Desulfovibrio/clasificación , Desulfovibrio/crecimiento & desarrollo , Oxidación-Reducción , Filogenia
7.
Science ; 306(5695): 455, 2004 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-15486292

RESUMEN

Arsenate [As(V)]-respiring bacteria affect the speciation and mobilization of arsenic in the environment. This can lead to arsenic contamination of drinking water supplies and deleterious consequences for human health. Using molecular genetics, we show that the functional gene for As(V) respiration, arrA, is highly conserved; that it is required for As(V) reduction to arsenite when arsenic is sorbed onto iron minerals; and that it can be used to identify the presence and activity of As(V)-respiring bacteria in arsenic-contaminated iron-rich sediments. The expression of arrA thus can be used to monitor sites in which As(V)-respiring bacteria may be controlling arsenic geochemistry.


Asunto(s)
Archaea/metabolismo , Arseniatos/metabolismo , Bacterias/metabolismo , Bombas Iónicas/genética , Complejos Multienzimáticos/genética , Shewanella/genética , Shewanella/metabolismo , Archaea/genética , ATPasas Transportadoras de Arsenitos , Arsenitos/metabolismo , Bacterias/genética , Secuencia Conservada , Compuestos Férricos/metabolismo , Genes Bacterianos , Bombas Iónicas/metabolismo , Complejos Multienzimáticos/metabolismo , Oxidación-Reducción , Reacción en Cadena de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA