Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 48(W1): W200-W207, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32402076

RESUMEN

High-Throughput Sequencing technologies are transforming many research fields, including the analysis of phage display libraries. The phage display technology coupled with deep sequencing was introduced more than a decade ago and holds the potential to circumvent the traditional laborious picking and testing of individual phage rescued clones. However, from a bioinformatics point of view, the analysis of this kind of data was always performed by adapting tools designed for other purposes, thus not considering the noise background typical of the 'interactome sequencing' approach and the heterogeneity of the data. InteractomeSeq is a web server allowing data analysis of protein domains ('domainome') or epitopes ('epitome') from either Eukaryotic or Prokaryotic genomic phage libraries generated and selected by following an Interactome sequencing approach. InteractomeSeq allows users to upload raw sequencing data and to obtain an accurate characterization of domainome/epitome profiles after setting the parameters required to tune the analysis. The release of this tool is relevant for the scientific and clinical community, because InteractomeSeq will fill an existing gap in the field of large-scale biomarkers profiling, reverse vaccinology, and structural/functional studies, thus contributing essential information for gene annotation or antigen identification. InteractomeSeq is freely available at https://InteractomeSeq.ba.itb.cnr.it/.


Asunto(s)
Técnicas de Visualización de Superficie Celular , Epítopos , Secuenciación de Nucleótidos de Alto Rendimiento , Dominios Proteicos , Programas Informáticos , Bacteriófagos/genética , Internet
2.
Mol Ther ; 28(2): 642-652, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31495777

RESUMEN

Glial cell-derived neurotrophic factor (GDNF) has a potent action in promoting the survival of dopamine (DA) neurons. Several studies indicate that increasing GDNF levels may be beneficial for the treatment of Parkinson's disease (PD) by reducing neurodegeneration of DA neurons. Despite a plethora of preclinical studies showing GDNF efficacy in PD animal models, its application in humans remains questionable for its poor efficacy and side effects due to its uncontrolled, ectopic expression. Here we took advantage of SINEUPs, a new class of antisense long non-coding RNA, that promote translation of partially overlapping sense protein-coding mRNAs with no effects on their mRNA levels. By synthesizing a SINEUP targeting Gdnf mRNA, we were able to increase endogenous GDNF protein levels by about 2-fold. Adeno-associated virus (AAV)9-mediated delivery in the striatum of wild-type (WT) mice led to an increase of endogenous GDNF protein for at least 6 months and the potentiation of the DA system's functions while showing no side effects. Furthermore, SINEUP-GDNF was able to ameliorate motor deficits and neurodegeneration of DA neurons in a PD neurochemical mouse model. Our data indicate that SINEUP-GDNF could represent a new strategy to increase endogenous GDNF protein levels in a more physiological manner for therapeutic treatments of PD.


Asunto(s)
Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Neuronas Motoras/metabolismo , Enfermedad de Parkinson/genética , Interferencia de ARN , ARN no Traducido/genética , Animales , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Dependovirus/genética , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Regulación de la Expresión Génica , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Humanos , Inmunohistoquímica , Ratones , Neuronas Motoras/patología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Fenotipo
3.
Nucleic Acids Res ; 47(20): 10728-10743, 2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31584077

RESUMEN

Friedreich's ataxia (FRDA) is an untreatable disorder with neuro- and cardio-degenerative progression. This monogenic disease is caused by the hyper-expansion of naturally occurring GAA repeats in the first intron of the FXN gene, encoding for frataxin, a protein implicated in the biogenesis of iron-sulfur clusters. As the genetic defect interferes with FXN transcription, FRDA patients express a normal frataxin protein but at insufficient levels. Thus, current therapeutic strategies are mostly aimed to restore physiological FXN expression. We have previously described SINEUPs, natural and synthetic antisense long non-coding RNAs, which promote translation of partially overlapping mRNAs through the activity of an embedded SINEB2 domain. Here, by in vitro screening, we have identified a number of SINEUPs targeting human FXN mRNA and capable to up-regulate frataxin protein to physiological amounts acting at the post-transcriptional level. Furthermore, FXN-specific SINEUPs promote the recovery of disease-associated mitochondrial aconitase defects in FRDA-derived cells. In summary, we provide evidence that SINEUPs may be the first gene-specific therapeutic approach to activate FXN translation in FRDA and, more broadly, a novel scalable platform to develop new RNA-based therapies for haploinsufficient diseases.


Asunto(s)
Ataxia de Friedreich/genética , Regulación de la Expresión Génica , Proteínas de Unión a Hierro/genética , Modelos Biológicos , ARN no Traducido/metabolismo , Aconitato Hidratasa/metabolismo , Línea Celular , Fibroblastos/metabolismo , Humanos , Linfocitos/metabolismo , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN no Traducido/genética , Frataxina
4.
FASEB J ; 33(12): 13572-13589, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31570000

RESUMEN

Transposable elements (TEs) compose about half of the mammalian genome and, as embedded sequences, up to 40% of long noncoding RNA (lncRNA) transcripts. Embedded TEs may represent functional domains within lncRNAs, providing a structured RNA platform for protein interaction. Here we show the interactome profile of the mouse inverted short interspersed nuclear element (SINE) of subfamily B2 (invSINEB2) alone and embedded in antisense (AS) ubiquitin C-terminal hydrolase L1 (Uchl1), an lncRNA that is AS to Uchl1 gene. AS Uchl1 is the representative member of a functional class of AS lncRNAs, named SINEUPs, in which the invSINEB2 acts as effector domain (ED)-enhancing translation of sense protein-coding mRNAs. By using RNA-interacting domainome technology, we identify the IL enhancer-binding factor 3 (ILF3) as a protein partner of AS Uchl1 RNA. We determine that this interaction is mediated by the RNA-binding motif 2 of ILF3 and the invSINEB2. Furthermore, we show that ILF3 is able to bind a free right Arthrobacter luteus (Alu) monomer sequence, the embedded TE acting as ED in human SINEUPs. Bioinformatic analysis of Encyclopedia of DNA Elements-enhanced cross-linking immunoprecipitation data reveals that ILF3 binds transcribed human SINE sequences at transcriptome-wide levels. We then demonstrate that the embedded TEs modulate AS Uchl1 RNA nuclear localization to an extent moderately influenced by ILF3. This work unveils the existence of a specific interaction between embedded TEs and an RNA-binding protein, strengthening the model of TEs as functional modules in lncRNAs.-Fasolo, F., Patrucco, L., Volpe, M., Bon, C., Peano, C., Mignone, F., Carninci, P., Persichetti, F., Santoro, C., Zucchelli, S., Sblattero, D., Sanges, R., Cotella, D., Gustincich, S. The RNA-binding protein ILF3 binds to transposable element sequences in SINEUP lncRNAs.


Asunto(s)
Elementos Transponibles de ADN , Proteínas del Factor Nuclear 90/metabolismo , ARN sin Sentido/genética , ARN Largo no Codificante/metabolismo , ARN Mensajero/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Animales , Biología Computacional , Ensayos Analíticos de Alto Rendimiento , Humanos , Ratones , Proteínas del Factor Nuclear 90/genética , Biosíntesis de Proteínas , Dominios y Motivos de Interacción de Proteínas , ARN Largo no Codificante/genética , ARN Mensajero/genética , Ubiquitina Tiolesterasa/genética
5.
FASEB J ; 33(2): 2327-2342, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30285580

RESUMEN

The interaction between the enzyme transglutaminase 2 (TG2) and fibronectin (FN) is involved in the cell-matrix interactions that regulate cell signaling, adhesion, and migration and play central roles in pathologic conditions, particularly fibrosis and cancer. A precise definition of the exact interaction domains on both proteins could provide a tool to design novel molecules with potential therapeutic applications. Although specific residues involved in the interaction within TG2 have been analyzed, little is known regarding the TG2 binding site on FN. This site has been mapped to a large internal 45-kDa protein fragment coincident with the gelatin binding domain (GBD). With the goal of defining the minimal FN interacting domain for TG2, we produced several expression constructs encoding different portions or modules of the GBD and tested their binding and functional properties. The results demonstrate that the I8 module is necessary and sufficient for TG2-binding in vitro, but does not have functional effects on TG2-expressing cells. Modules I7 and I9 increase the strength of the binding and are required for cell adhesion. A 15-kDa fragment encompassing modules I7-9 behaves as the whole 45-kDa GBD and mediates signaling, adhesion, spreading, and migration of TG2+ cells. This study provides new insights into the mechanism for TG2 binding to FN.-Soluri, M. F., Boccafoschi, F., Cotella, D., Moro, L., Forestieri, G., Autiero, I., Cavallo, L., Oliva, R., Griffin, M., Wang, Z., Santoro, C., Sblattero, D. Mapping the minimum domain of the fibronectin binding site on transglutaminase 2 (TG2) and its importance in mediating signaling, adhesion, and migration in TG2-expressing cells.


Asunto(s)
Adhesión Celular , Movimiento Celular , Fibronectinas/metabolismo , Proteínas de Unión al GTP/metabolismo , Transglutaminasas/metabolismo , Animales , Sitios de Unión , Células Cultivadas , Fibronectinas/química , Fibronectinas/genética , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/genética , Humanos , Ratones , Ratones Noqueados , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios Proteicos , Proteína Glutamina Gamma Glutamiltransferasa 2 , Transducción de Señal , Transglutaminasas/química , Transglutaminasas/genética
6.
Genes Immun ; 20(6): 509-513, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30282994

RESUMEN

Skin melanoma remains one of the most aggressive and difficult to treat human malignancy, with an increasing incidence every year. Although surgical resection represents the best therapeutic approach, this is only feasible in cases of early diagnosis. Furthermore, the established malignancy is resistant to all therapeutic strategies employed so far, resulting in an unacceptable patient survival rate. Although the immune-mediated therapeutic approaches, based on anti-PD1 or anti-CTLA4, are very promising and under clinical trial experimentation, they could conceal not yet fully emerged pitfalls such as the development of autoimmune diseases. Therefore, alternative therapeutic approaches are still under investigation, such as the immunogenic cell death (ICD) process. Here we show that the lack of calreticulin translocation onto mouse melanoma cell membrane prevents the stimulation of an effective ICD response in vivo.


Asunto(s)
Calbindina 2/metabolismo , Membrana Celular/metabolismo , Muerte Celular Inmunogénica , Melanoma Experimental/tratamiento farmacológico , Neoplasias Cutáneas/tratamiento farmacológico , Animales , Apoptosis/inmunología , Calbindina 2/inmunología , Línea Celular Tumoral , Femenino , Humanos , Melanoma Experimental/inmunología , Ratones , Ratones Endogámicos C57BL , Neoplasias Cutáneas/inmunología
7.
Hum Mutat ; 39(8): 1102-1111, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29766597

RESUMEN

Diamond-Blackfan anemia (DBA) is a rare genetic hypoplasia of erythroid progenitors characterized by mild to severe anemia and associated with congenital malformations. Clinical manifestations in DBA patients are quite variable and genetic testing has become a critical factor in establishing a diagnosis of DBA. The majority of DBA cases are due to heterozygous loss-of-function mutations in ribosomal protein (RP) genes. Causative mutations are fairly straightforward to identify in the case of large deletions and frameshift and nonsense mutations found early in a protein coding sequence, but diagnosis becomes more challenging in the case of missense mutations and small in-frame indels. Our group recently characterized the phenotype of lymphoblastoid cell lines established from DBA patients with pathogenic lesions in RPS19 and observed that defective pre-rRNA processing, a hallmark of the disease, was rescued by lentiviral vectors expressing wild-type RPS19. Here, we use this complementation assay to determine whether RPS19 variants of unknown significance are capable of rescuing pre-rRNA processing defects in these lymphoblastoid cells as a means of assessing the effects of these sequence changes on the function of the RPS19 protein. This approach will be useful in differentiating pathogenic mutations from benign polymorphisms in identifying causative genes in DBA patients.


Asunto(s)
Anemia de Diamond-Blackfan/genética , Proteínas Ribosómicas/genética , Línea Celular , Codón sin Sentido/genética , Biología Computacional , ADN Complementario/genética , Mutación del Sistema de Lectura/genética , Humanos , Mutación/genética , Fenotipo
8.
Nature ; 491(7424): 454-7, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23064229

RESUMEN

Most of the mammalian genome is transcribed. This generates a vast repertoire of transcripts that includes protein-coding messenger RNAs, long non-coding RNAs (lncRNAs) and repetitive sequences, such as SINEs (short interspersed nuclear elements). A large percentage of ncRNAs are nuclear-enriched with unknown function. Antisense lncRNAs may form sense-antisense pairs by pairing with a protein-coding gene on the opposite strand to regulate epigenetic silencing, transcription and mRNA stability. Here we identify a nuclear-enriched lncRNA antisense to mouse ubiquitin carboxy-terminal hydrolase L1 (Uchl1), a gene involved in brain function and neurodegenerative diseases. Antisense Uchl1 increases UCHL1 protein synthesis at a post-transcriptional level, hereby identifying a new functional class of lncRNAs. Antisense Uchl1 activity depends on the presence of a 5' overlapping sequence and an embedded inverted SINEB2 element. These features are shared by other natural antisense transcripts and can confer regulatory activity to an artificial antisense to green fluorescent protein. Antisense Uchl1 function is under the control of stress signalling pathways, as mTORC1 inhibition by rapamycin causes an increase in UCHL1 protein that is associated to the shuttling of antisense Uchl1 RNA from the nucleus to the cytoplasm. Antisense Uchl1 RNA is then required for the association of the overlapping sense protein-coding mRNA to active polysomes for translation. These data reveal another layer of gene expression control at the post-transcriptional level.


Asunto(s)
Biosíntesis de Proteínas/genética , ARN sin Sentido/metabolismo , Elementos de Nucleótido Esparcido Corto/genética , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Animales , Antibacterianos/farmacología , Línea Celular , Humanos , Masculino , Ratones , Biosíntesis de Proteínas/efectos de los fármacos , ARN sin Sentido/genética , Inversión de Secuencia , Sirolimus/farmacología
9.
J Neurochem ; 139(4): 596-609, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27488413

RESUMEN

Erythropoietin receptor (EpoR) regulates erythrocytes differentiation in blood. In the brain, EpoR has been shown to protect several neuronal cell types from cell death, including the A9 dopaminergic neurons (DA) of the Substantia Nigra (SN). These cells form the nigrostriatal pathway and are devoted to the control of postural reflexes and voluntary movements. Selective degeneration of A9 DA neurons leads to Parkinson's disease. By the use of nanoCAGE, a technology that allows the identification of Transcription Start Sites (TSSs) at a genome-wide level, we have described the promoter-level expression atlas of mouse A9 DA neurons purified with Laser Capture Microdissection (LCM). Here, we identify mRNA variants of the Erythropoietin Receptor (DA-EpoR) transcribed from alternative TSSs. Experimental validation and full-length cDNA cloning is integrated with gene expression analysis in the FANTOM5 database. In DA neurons, the EpoR gene encodes for a N-terminal truncated receptor. Based on STAT5 phosphorylation assays, we show that the new variant of N-terminally truncated EpoR acts as decoy when co-expressed with the full-length form. A similar isoform is also found in human. This work highlights new complexities in the regulation of Erythropoietin (EPO) signaling in the brain.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Receptores de Eritropoyetina/genética , Receptores de Eritropoyetina/metabolismo , Sustancia Negra/metabolismo , Animales , Secuencia de Bases , Neuronas Dopaminérgicas/química , Células HEK293 , Humanos , Captura por Microdisección con Láser/métodos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Isoformas de Proteínas/análisis , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores de Eritropoyetina/análisis , Sustancia Negra/química , Transcripción Genética/fisiología
10.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 11): 2227-35, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26527140

RESUMEN

The 1.8 Å resolution crystal structure of a conserved domain of the potential Burkholderia pseudomallei antigen and trimeric autotransporter BPSL2063 is presented as a structural vaccinology target for melioidosis vaccine development. Since BPSL2063 (1090 amino acids) hosts only one conserved domain, and the expression/purification of the full-length protein proved to be problematic, a domain-filtering library was generated using ß-lactamase as a reporter gene to select further BPSL2063 domains. As a result, two domains (D1 and D2) were identified and produced in soluble form in Escherichia coli. Furthermore, as a general tool, a genomic open reading frame-filtering library from the B. pseudomallei genome was also constructed to facilitate the selection of domain boundaries from the entire ORFeome. Such an approach allowed the selection of three potential protein antigens that were also produced in soluble form. The results imply the further development of ORF-filtering methods as a tool in protein-based research to improve the selection and production of soluble proteins or domains for downstream applications such as X-ray crystallography.


Asunto(s)
Antígenos Bacterianos/química , Proteínas Bacterianas/química , Burkholderia pseudomallei/química , Melioidosis/microbiología , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Burkholderia pseudomallei/genética , Cristalografía por Rayos X , Genoma Bacteriano , Humanos , Modelos Moleculares , Sistemas de Lectura Abierta , Conformación Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Solubilidad
11.
RNA Biol ; 12(12): 1289-300, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26512911

RESUMEN

We describe here a platform for high-throughput protein expression and interaction analysis aimed at identifying the RNA-interacting domainome. This approach combines the selection of a phage library displaying "filtered" open reading frames with next-generation DNA sequencing. The method was validated using an RNA bait corresponding to the AU-rich element of α-prothymosin, an RNA motif that promotes mRNA stability and translation through its interaction with the RNA-binding protein ELAVL1. With this strategy, we not only confirmed known RNA-binding proteins that specifically interact with the target RNA (such as ELAVL1/HuR and RBM38) but also identified proteins not previously known to be ARE-binding (R3HDM2 and RALY). We propose this technology as a novel approach for studying the RNA-binding proteome.


Asunto(s)
Elementos Ricos en Adenilato y Uridilato/genética , Sistemas de Lectura Abierta/genética , Dominios y Motivos de Interacción de Proteínas/genética , Precursores de Proteínas/genética , Proteínas de Unión al ARN/metabolismo , Timosina/análogos & derivados , Células HEK293 , Humanos , Unión Proteica , Precursores de Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Timosina/genética , Timosina/metabolismo
12.
Proteomics ; 14(20): 2286-96, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25069755

RESUMEN

Diamond-Blackfan anemia, characterized by defective erythroid progenitor maturation, is caused in one-fourth of cases by mutations of ribosomal protein S19 (RPS19), which is a component of the ribosomal 40S subunit. Our previous work described proteins interacting with RPS19 with the aim to determine its functions. Here, two RPS19 mutants, R62W and R101H, have been selected to compare their interactomes versus the wild-type protein one, using the same functional proteomic approach that we employed to characterize RPS19 interactome. Mutations R62W and R101H impair RPS19 ability to associate with the ribosome. Results presented in this paper highlight the striking differences between the interactomes of wild-type and mutant RPS19 proteins. In particular, mutations abolish interactions with proteins having splicing, translational and helicase activity, thus confirming the role of RPS19 in RNA processing/metabolism and translational control. The data have been deposited to the ProteomeXchange with identifier PXD000640 (http://proteomecentral.proteomexchange.org/dataset/PXD000640).


Asunto(s)
Anemia de Diamond-Blackfan/genética , Mutación Puntual , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Anemia de Diamond-Blackfan/metabolismo , Humanos , Mapeo de Interacción de Proteínas/métodos , Mapas de Interacción de Proteínas , Proteómica/métodos , Ribosomas/genética , Biología de Sistemas/métodos
13.
Microb Cell Fact ; 13: 132, 2014 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-25218288

RESUMEN

BACKGROUND: Over the last few years High-Throughput Protein Production (HTPP) has played a crucial role for functional proteomics. High-quality, high yield and fast recombinant protein production are critical for new HTPP technologies. Escherichia coli is usually the expression system of choice in protein production thanks to its fast growth, ease of handling and high yields of protein produced. Even though shake-flask cultures are widely used, there is an increasing need for easy to handle, lab scale, high throughput systems. RESULTS: In this article we described a novel minifermenter system suitable for HTPP. The Air-Well minifermenter system is made by a homogeneous air sparging device that includes an air diffusion system, and a stainless steel 96 needle plate integrated with a 96 deep well plate where cultures take place. This system provides aeration to achieve higher optical density growth compared to classical shaking growth without the decrease in pH value and bacterial viability. Moreover the yield of recombinant protein is up to 3-fold higher with a considerable improvement in the amount of full length proteins. CONCLUSIONS: High throughput production of hundreds of proteins in parallel can be obtained sparging air in a continuous and controlled manner. The system used is modular and can be easily modified and scaled up to meet the demands for HTPP.


Asunto(s)
Aire , Reactores Biológicos , Biotecnología/instrumentación , Biotecnología/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Proteínas Recombinantes/biosíntesis , Reactores Biológicos/microbiología , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Análisis por Matrices de Proteínas
14.
Clin Immunol ; 148(1): 99-109, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23685219

RESUMEN

The aim of this study was to dissect the autoantibody response in celiac disease (CD) that remains largely unknown, with the goal of identifying the disease-specific autoantigenic protein pattern or the so called epitome. Sera from CD patients were used to select immunoreactive antigens from a cDNA phage-display library. Candidate genes were identified, the corresponding proteins produced and their immunoreactivity validated with sera from CD patients and controls. Thirteen CD-specific antigens were identified and further validated by protein microarray. The specificity for 6 of these antigens was confirmed by ELISA. Furthermore we showed that this antibody response was not abolished on a gluten free diet and was not shared with other autoimmune diseases. These antigens appear to be CD specific and independent of gluten induction. The utility of this panel extends beyond its diagnostic value and it may drive the attention to new targets for unbiased screens in autoimmunity research.


Asunto(s)
Autoanticuerpos/inmunología , Autoantígenos/inmunología , Enfermedad Celíaca/inmunología , Adolescente , Adulto , Autoanticuerpos/sangre , Autoantígenos/genética , Enfermedad Celíaca/sangre , Enfermedad Celíaca/diagnóstico , Enfermedad Celíaca/genética , Técnicas de Visualización de Superficie Celular , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos , Análisis por Matrices de Proteínas , Curva ROC , Adulto Joven
15.
Mol Ther Nucleic Acids ; 32: 402-414, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37187707

RESUMEN

SINEUPs are natural and synthetic antisense long non-coding RNAs (lncRNAs) selectively enhancing target mRNAs translation by increasing their association with polysomes. This activity requires two RNA domains: an embedded inverted SINEB2 element acting as effector domain, and an antisense region, the binding domain, conferring target selectivity. SINEUP technology presents several advantages to treat genetic (haploinsufficiencies) and complex diseases restoring the physiological activity of diseased genes and of compensatory pathways. To streamline these applications to the clinic, a better understanding of the mechanism of action is needed. Here we show that natural mouse SINEUP AS Uchl1 and synthetic human miniSINEUP-DJ-1 are N6-methyladenosine (m6A) modified by METTL3 enzyme. Then, we map m6A-modified sites along SINEUP sequence with Nanopore direct RNA sequencing and a reverse transcription assay. We report that m6A removal from SINEUP RNA causes the depletion of endogenous target mRNA from actively translating polysomes, without altering SINEUP enrichment in ribosomal subunit-associated fractions. These results prove that SINEUP activity requires an m6A-dependent step to enhance translation of target mRNAs, providing a new mechanism for m6A translation regulation and strengthening our knowledge of SINEUP-specific mode of action. Altogether these new findings pave the way to a more effective therapeutic application of this well-defined class of lncRNAs.

16.
Nat Commun ; 14(1): 4974, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37591988

RESUMEN

Long Interspersed Nuclear Elements-1s (L1s) are transposable elements that constitute most of the genome's transcriptional output yet have still largely unknown functions. Here we show that L1s are required for proper mouse brain corticogenesis operating as regulatory long non-coding RNAs. They contribute to the regulation of the balance between neuronal progenitors and differentiation, the migration of post-mitotic neurons and the proportions of different cell types. In cortical cultured neurons, L1 RNAs are mainly associated to chromatin and interact with the Polycomb Repressive Complex 2 (PRC2) protein subunits enhancer of Zeste homolog 2 (Ezh2) and suppressor of zeste 12 (Suz12). L1 RNA silencing influences PRC2's ability to bind a portion of its targets and the deposition of tri-methylated histone H3 (H3K27me3) marks. Our results position L1 RNAs as crucial signalling hubs for genome-wide chromatin remodelling, enabling the fine-tuning of gene expression during brain development and evolution.


Asunto(s)
Elementos de Nucleótido Esparcido Largo , ARN Largo no Codificante , Animales , Ratones , Elementos de Nucleótido Esparcido Largo/genética , Diferenciación Celular , Cromatina/genética , Ensamble y Desensamble de Cromatina , ARN Largo no Codificante/genética
17.
J Biol Chem ; 286(28): 25108-17, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21454471

RESUMEN

Huntington disease (HD) is a neurodegenerative disorder caused by an expansion of polyglutamines in the first exon of huntingtin (HTT), which confers aggregation-promoting properties to amino-terminal fragments of the protein (N-HTT). Mutant N-HTT aggregates are enriched for ubiquitin and contain ubiquitin E3 ligases, thus suggesting a role for ubiquitination in aggregate formation. Here, we report that tumor necrosis factor receptor-associated factor 6 (TRAF6) binds to WT and polyQ-expanded N-HTT in vitro as well as to endogenous full-length proteins in mouse and human brain in vivo. Endogenous TRAF6 is recruited to cellular inclusions formed by mutant N-HTT. Transient overexpression of TRAF6 promotes WT and mutant N-HTT atypical ubiquitination with Lys(6), Lys(27), and Lys(29) linkage formation. Both interaction and ubiquitination seem to be independent from polyQ length. In cultured cells, TRAF6 enhances mutant N-HTT aggregate formation, whereas it has no effect on WT N-HTT protein localization. Mutant N-HTT inclusions are enriched for ubiquitin staining only when TRAF6 and Lys(6), Lys(27), and Lys(29) ubiquitin mutants are expressed. Finally, we show that TRAF6 is up-regulated in post-mortem brains from HD patients where it is found in the insoluble fraction. These results suggest that TRAF6 atypical ubiquitination warrants investigation in HD pathogenesis.


Asunto(s)
Encéfalo/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Péptidos/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , Ubiquitinación , Animales , Encéfalo/patología , Células HEK293 , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Cuerpos de Inclusión/genética , Cuerpos de Inclusión/metabolismo , Cuerpos de Inclusión/patología , Ratones , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Péptidos/genética , Unión Proteica , Transporte de Proteínas/genética , Factor 6 Asociado a Receptor de TNF/genética
18.
Nucleic Acids Res ; 38(9): e110, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20144949

RESUMEN

We have developed a high-throughput protein expression and interaction analysis platform that combines cDNA phage display library selection and massive gene sequencing using the 454 platform. A phage display library of open reading frame (ORF) fragments was created from mRNA derived from different tissues. This was used to study the interaction network of the enzyme transglutaminase 2 (TG2), a multifunctional enzyme involved in the regulation of cell growth, differentiation and apoptosis, associated with many different pathologies. After two rounds of panning with TG2 we assayed the frequency of ORFs within the selected phage population using 454 sequencing. Ranking and analysis of more than 120,000 sequences allowed us to identify several potential interactors, which were subsequently confirmed in functional assays. Within the identified clones, three had been previously described as interacting proteins (fibronectin, SMOC1 and GSTO2), while all the others were new. When compared with standard systems, such as microtiter enzyme-linked immunosorbant assay, the method described here is dramatically faster and yields far more information about the interaction under study, allowing better characterization of complex systems. For example, in the case of fibronectin, it was possible to identify the specific domains involved in the interaction.


Asunto(s)
Mapeo de Interacción de Proteínas/métodos , Análisis de Secuencia de ADN/métodos , ADN Complementario/química , Proteínas de Unión al GTP/metabolismo , Humanos , Sistemas de Lectura Abierta , Biblioteca de Péptidos , Proteína Glutamina Gamma Glutamiltransferasa 2 , Dominios y Motivos de Interacción de Proteínas , Transglutaminasas/metabolismo
19.
Proc Natl Acad Sci U S A ; 106(36): 15454-9, 2009 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-19717439

RESUMEN

The mesencephalic dopaminergic (mDA) cell system is composed of two major groups of projecting cells in the substantia nigra (SN) (A9 neurons) and the ventral tegmental area (VTA) (A10 cells). A9 neurons form the nigrostriatal pathway and are involved in regulating voluntary movements and postural reflexes. Their selective degeneration leads to Parkinson's disease. Here, we report that gene expression analysis of A9 dopaminergic neurons (DA) identifies transcripts for alpha- and beta-chains of hemoglobin (Hb). Globin immunoreactivity decorates the majority of A9 DA, a subpopulation of cortical and hippocampal astrocytes and mature oligodendrocytes. This pattern of expression was confirmed in different mouse strains and in rat and human. We show that Hb is expressed in the SN of human postmortem brain. By microarray analysis of dopaminergic cell lines overexpressing alpha- and beta-globin chains, changes in genes involved in O(2) homeostasis and oxidative phopshorylation were observed, linking Hb expression to mitochondrial function. Our data suggest that the most famed oxygen-carrying globin is not exclusively restricted to the blood, but it may play a role in the normal physiology of the brain and neurodegenerative diseases.


Asunto(s)
Neuroglía/metabolismo , Neuronas/metabolismo , Sustancia Negra/citología , Área Tegmental Ventral/citología , Globinas alfa/metabolismo , Globinas beta/metabolismo , Animales , Citometría de Flujo , Proteínas Fluorescentes Verdes , Humanos , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Ratas
20.
Biology (Basel) ; 11(11)2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36358275

RESUMEN

BACKGROUND: IBD is a spectrum of pathologies characterized by dysregulated immune activation leading to uncontrolled response against the intestine, thus resulting in chronic gut inflammation and tissue damage. Due to its complexity, the molecular mechanisms responsible for disease onset and progression are still elusive, thus requiring intense research effort. In this context, the development of models replicating the etiopathology of IBD and allowing the testing of new potential therapies is critical. METHODS: Colon from C57BL/6 or BALB/c mice was cultivated in a Gut-Ex-Vivo System (GEVS), exposed for 5 h to DNBS 1.5 or 2.5 mg/mL, in presence or absence of two probiotic formulations (P1 = Bifidobacterium breve BR03 (DSM16604) and B632 (DSM24706); P2 = Lacticaseibacillus rhamnosus LR04 (DSM16605), Lactiplantibacillus plantarum LP14 (DSM33401) and Lacticaseibacillus paracasei LPC09), and the main hallmarks of IBD were evaluated. RESULTS: Gene expression analysis revealed the following DNBS-induced effects: (i) compromised tight junction organization, responsible for tissue permeability dysregulation; (ii) induction of ER stress, and (iii) tissue inflammation in colon of C57BL/6 mice. Moreover, the concomitant DNBS-induced apoptosis and ferroptosis pathways were evident in colon from both BALB/c and C57BL/6 mice. Finally, the co-administration of probiotics completely prevented the detrimental effects of DNBS. CONCLUSIONS: Overall, we have provided results demonstrating that GEVS is a consistent, reliable, and cost-effective system for modeling DNBS-induced IBD, useful for studying the onset and progression of human disease at the molecular level, while also reducing animal suffering. Moreover, we have confirmed the beneficial effect of probiotics administration in promoting the remission of IBD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA