Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Access Microbiol ; 6(8)2024.
Artículo en Inglés | MEDLINE | ID: mdl-39148687

RESUMEN

Bacteria of the species Oceanotoga teriensis belong to the family Petrotogaceae, are Gram-negative bacilli, are moderately thermophilic and are included in the group of thiosulfate-reducing bacteria, being capable of significantly accelerating corrosion in metallic structures. However, no in-depth study on the genome, antibiotic resistance and mobile elements has been carried out so far. In this work, the isolation, phenotypic and genotypic characterization of the multi-resistant O. teriensis UFV_LIMV02 strain was carried out, from water samples from an offshore oil extraction platform in Rio de Janeiro (Brazil). We determined that the isolate has a genome of 2 812 778 bp in size, with 26 % GC content, organized into 34 contigs. Genomic annotation using Rapid Annotation using Subsystem Technology revealed the presence of genes related to resistance to antibiotics and heavy metals. By evaluating the antimicrobial resistance of the isolate using the disc diffusion technique, resistance was verified for the classes of antibiotics, beta-lactams, fluoroquinolones, aminoglycosides, sulfonamides, lincosamides and rifamycins, a total of 14 antibiotics. The search for genomic islands, prophages and defence systems against phage infection revealed the presence of five genomic islands in its genome, containing genes related to resistance to heavy metals and antibiotics, most of which are efflux pumps and several transposases. No prophage was found in its genome; however, nine different defence systems against phage infection were detected. When analysing the clustered regularly interspaced short palindromic repeat (CRISPR) systems, four CRISPR arrays, classified as types I-B and III-B, with 272 spacers, can provide the strain with immunity to different mobile genetic elements and bacteriophage infection. The results found in this study show that the isolate UFV_LIVM02 is an environmental bacterium, resistant to different classes of antibiotics, and that the proteins encoded by the predicted genomic islands may be associated with the development of greater resistance to antibiotics and heavy metals. They provide evidence that environmental bacteria found in offshore oil exploration residues may pose a risk for the spread of antibiotic resistance genes. More comprehensive studies on the microbial community present in oil waste are needed to assess the risks of horizontal gene transfer.

2.
Heliyon ; 10(18): e37934, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39328515

RESUMEN

The control of microbiologically influenced corrosion (MIC) challenges the oil exploration sector. The MIC results from electrochemical reactions facilitated by microorganisms such as sulfate-reducing bacteria (SRB), which adhere to the surface of the ducts forming biofilms. SRB uses sulfate as the final electron acceptor, resulting in hydrogen sulfide as the final product, a highly reactive corrosive, and toxic compound. Due to the high diversity of the SRB group, this study evaluated the effect of an Escherichia coli phage, with biofilm degrading enzymes, in preventing biofilm formation by microbial consortium P48SEP and reducing H2S production in a complex SRB community. Three phage concentrations were evaluated (104, 108 and 1012 UFP/ml). High and medium phage concentrations prevented biofilm development, as evidenced by scanning electron microscopy, chemical analysis, and cell counts. In addition, the virus altered the expression pattern of some bacterial genes and the relative abundance of proteins related to biofilm formation and cell stress response. Using a complex culture formed mainly by SRB, it was possible to observe the bacterial growth, H2S, and metabolic activity reduction after the phage was added. This study shows for the first time the ability of an E. coli-infecting phage to prevent the biofilm formation of an SRB consortium and infect and replicate at high concentrations on the non-specific host. This new finding turns the use of non-specific phages a promising alternative for the control of biocorrosion in oil and gas installations, on the other side, alert to the use of large concentration of phages and the influence on bacterial groups with geological importance, opening a research field in phage biology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA