Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Physiol Rev ; 98(1): 505-553, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29351514

RESUMEN

The renin-angiotensin system (RAS) is a key player in the control of the cardiovascular system and hydroelectrolyte balance, with an influence on organs and functions throughout the body. The classical view of this system saw it as a sequence of many enzymatic steps that culminate in the production of a single biologically active metabolite, the octapeptide angiotensin (ANG) II, by the angiotensin converting enzyme (ACE). The past two decades have revealed new functions for some of the intermediate products, beyond their roles as substrates along the classical route. They may be processed in alternative ways by enzymes such as the ACE homolog ACE2. One effect is to establish a second axis through ACE2/ANG-(1-7)/MAS, whose end point is the metabolite ANG-(1-7). ACE2 and other enzymes can form ANG-(1-7) directly or indirectly from either the decapeptide ANG I or from ANG II. In many cases, this second axis appears to counteract or modulate the effects of the classical axis. ANG-(1-7) itself acts on the receptor MAS to influence a range of mechanisms in the heart, kidney, brain, and other tissues. This review highlights the current knowledge about the roles of ANG-(1-7) in physiology and disease, with particular emphasis on the brain.


Asunto(s)
Angiotensina I/metabolismo , Encéfalo/metabolismo , Fragmentos de Péptidos/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sistema Renina-Angiotensina , Enzima Convertidora de Angiotensina 2 , Animales , Humanos , Proto-Oncogenes Mas , Transducción de Señal
2.
J Cell Physiol ; 239(6): e31265, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38577921

RESUMEN

The renin-angiotensin system (RAS) is an endocrine system composed of two main axes: the classical and the counterregulatory, very often displaying opposing effects. The classical axis, primarily mediated by angiotensin receptors type 1 (AT1R), is linked to obesity-associated metabolic effects. On the other hand, the counterregulatory axis appears to exert antiobesity effects through the activation of two receptors, the G protein-coupled receptor (MasR) and Mas-related receptor type D (MrgD). The local RAS in adipose organ has prompted extensive research into white adipose tissue and brown adipose tissue (BAT), with a key role in regulating the cellular and metabolic plasticity of these tissues. The MasR activation favors the brown plasticity signature in the adipose organ by improve the thermogenesis, adipogenesis, and lipolysis, decrease the inflammatory state, and overall energy homeostasis. The MrgD metabolic effects are related to the maintenance of BAT functionality, but the signaling remains unexplored. This review provides a summary of RAS counterregulatory actions triggered by Mas and MrgD receptors on adipose tissue plasticity. Focus on the effects related to the morphology and function of adipose tissue, especially from animal studies, will be given targeting new avenues for treatment of obesity-associated metabolic effects.


Asunto(s)
Tejido Adiposo , Proto-Oncogenes Mas , Receptores Acoplados a Proteínas G , Sistema Renina-Angiotensina , Animales , Humanos , Tejido Adiposo/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Metabolismo Energético , Obesidad/metabolismo , Obesidad/patología , Receptores Acoplados a Proteínas G/metabolismo , Sistema Renina-Angiotensina/fisiología , Transducción de Señal
3.
Cytokine ; 166: 156192, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37054665

RESUMEN

AIMS: The consumption of highly refined carbohydrates increases systemic inflammatory markers, but its potential to exert direct myocardial inflammation is uncertain. Herein, we addressed the impact of a high-refined carbohydrate (HC) diet on mice heart and local inflammation over time. MAIN METHODS: BALB/c mice were fed with a standard chow (control) or an isocaloric HC diet for 2, 4, or 8 weeks (HC groups), in which the morphometry of heart sections and contractile analyses by invasive catheterization and Langendorff-perfused hearts were assessed. Cytokines levels by ELISA, matrix metalloproteinase (MMP) activity by zymography, in situ reactive oxygen species (ROS) staining and lipid peroxidation-induced TBARS levels, were also determined. KEY FINDINGS: HC diet fed mice displayed left ventricular hypertrophy and interstitial fibrosis in all times analyzed, which was confirmed by echocardiographic analyses of 8HC group. Impaired contractility indices of HC groups were observed by left ventricular catheterization, whereas ex vivo and in vitro indices of contraction under isoprenaline-stimulation were higher in HC-fed mice compared with controls. Peak levels of TNF-α, TGF-ß, ROS, TBARS, and MMP-2 occur independently of HC diet time. However, a long-lasting local reduction of the anti-inflammatory cytokine IL-10 was found, which was linearly correlated to the decline of systolic function in vivo. SIGNIFICANCE: Altogether, the results indicate that short-term consumption of HC diet negatively impacts the balance of anti-inflammatory defenses and proinflammatory/profibrotic mediators in the heart, which can contribute to HC diet-induced morphofunctional cardiac alterations.


Asunto(s)
Tejido Adiposo , Citocinas , Animales , Ratones , Carbohidratos de la Dieta , Especies Reactivas de Oxígeno , Sustancias Reactivas al Ácido Tiobarbitúrico , Dieta , Inflamación
4.
Proteomics ; 22(17): e2100255, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35652611

RESUMEN

Alamandine is a heptapeptide from the renin-angiotensin system (RAS) with similar structure/function to angiotensin-(1-7) [ang-(1-7)], but they act via different receptors. It remains elusive whether alamandine is an antiproliferative agent like ang-(1-7). The goal of this study was to evaluate the potential antiproliferative activity of alamandine and the underlying cellular signaling. We evaluated alamandine effect in the tumoral cell lines Mia PaCa-2 and A549, and in the nontumoral cell lines HaCaT, CHO and CHO transfected with the alamandine receptor MrgD (CHO-MrgD). Alamandine was able to reduce the proliferation of the tumoral cell lines in a MrgD-dependent fashion. We did not observe any effect in the nontumoral cell lines tested. We also performed proteomics and phosphoproteomics to study the alamandine signaling in Mia PaCa-2 and CHO-MrgD. Data suggest that alamandine induces a shift from anaerobic to aerobic metabolism in the tumoral cells, induces a negative regulation of PI3K/AKT/mTOR pathway and activates the transcriptional factor FoxO1; events that could explain, at least partially, the observed antiproliferative effect of alamandine. This study provides for the first time a comprehensive investigation of the alamandine signaling in tumoral (Mia PaCa-2) and nontumoral (CHO-MrgD) cells, highlighting the antiproliferative activity of alamandine/MrgD and its possible antitumoral effect.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Receptores Acoplados a Proteínas G , Humanos , Oligopéptidos/metabolismo , Oligopéptidos/farmacología , Neoplasias Pancreáticas , Receptores Acoplados a Proteínas G/metabolismo , Neoplasias Pancreáticas
5.
Biochem Biophys Res Commun ; 619: 90-96, 2022 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-35749941

RESUMEN

The renin-angiotensin system (RAS) is a key hormonal system. In recent years, the functional analysis of the novel axis of the RAS (ACE2/Ang-(1-7)/Mas receptor) revealed that its activation can become protective against several pathologies, including cardiovascular diseases. Mas knockout mice (Mas-KO) represent an important tool for new investigations. Indeed, extensive biological research has focused on investigating the functional implications of Mas receptor deletion. However, although the Mas receptor was identified in neonatal cardiomyocytes and also in adult ventricular myocytes, only few reports have explored the Ang-(1-7)/Mas signaling directly in cardiomyocytes to date. This study investigated the implication of Mas receptor knockout to the cytokine profile, energy metabolism, and electrical properties of mice-isolated cardiomyocytes. Here, we demonstrated that Mas-KO mice have modulation in some cytokines, such as G-CSF, IL-6, IL-10, and VEGF in the left ventricle. This model also presents increased mitochondrial number in cardiomyocytes and a reduction in the myocyte diameter. Finally, Mas-KO cardiomyocytes have altered action potential modulation after diazoxide challenge. Such electrical finding was different from the data showed for the TGR(A1-7)3292 (TGR) model, which overexpresses Ang-(1-7) in the plasma by 4.5, used by us as a control. Collectively, our findings exemplify the importance of understanding the ACE2/Ang-(1-7)/Mas pathway in cardiomyocytes and heart tissue. The Mas-KO mice model can be considered an important tool for new RAS investigations.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Miocitos Cardíacos , Potenciales de Acción , Angiotensina I/metabolismo , Animales , Citocinas/metabolismo , Ratones , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Fragmentos de Péptidos/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Sistema Renina-Angiotensina/fisiología
6.
Am J Physiol Heart Circ Physiol ; 320(1): H352-H363, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33124885

RESUMEN

Alamandine is the newest identified peptide of the renin-angiotensin system (RAS) and has protective effects in the cardiovascular system. Although the involvement of classical RAS components in the genesis and progression of cardiac remodeling is well known, less is known about the effects of alamandine. Therefore, in the present study we investigated the effects of alamandine on cardiac remodeling induced by transverse aortic constriction (TAC) in mice. Male mice (C57BL/6), 10-12 wk of age, were divided into three groups: sham operated, TAC, and TAC + ALA (30 µg/kg/day alamandine for 14 days). The TAC surgery was performed under ketamine and xylazine anesthesia. At the end of treatment, the animals were submitted to echocardiographic examination and subsequently euthanized for tissue collection. TAC induced myocyte hypertrophy, collagen deposition, and the expression of matrix metalloproteinase (MMP)-2 and transforming growth factor (TGF)-ß in the left ventricle. These markers of cardiac remodeling were reduced by oral treatment with alamandine. Western blotting analysis showed that alamandine prevents the increase in ERK1/2 phosphorylation and reverts the decrease in 5'-adenosine monophosphate-activated protein kinase (AMPK)α phosphorylation induced by TAC. Although both TAC and TAC + ALA increased SERCA2 expression, the phosphorylation of phospholamban in the Thr17 residue was increased solely in the alamandine-treated group. The echocardiographic data showed that there are no functional or morphological alterations after 2 wk of TAC. Alamandine treatment prevents myocyte hypertrophy and cardiac fibrosis induced by TAC. Our results reinforce the cardioprotective role of alamandine and highlight its therapeutic potential for treating heart diseases related to pressure overload conditions.NEW & NOTEWORTHY Alamandine is the newest identified component of the renin-angiotensin system protective arm. Considering the beneficial effects already described so far, alamandine is a promising target for cardiovascular disease treatment. We demonstrated for the first time that alamandine improves many aspects of cardiac remodeling induced by pressure overload, including cell hypertrophy, fibrosis, and oxidative stress markers.


Asunto(s)
Fármacos Cardiovasculares/farmacología , Ventrículos Cardíacos/efectos de los fármacos , Hipertrofia Ventricular Izquierda/prevención & control , Oligopéptidos/farmacología , Función Ventricular Izquierda/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Aorta/fisiopatología , Aorta/cirugía , Proteínas de Unión al Calcio/metabolismo , Colágeno/metabolismo , Modelos Animales de Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/fisiopatología , Hipertrofia Ventricular Izquierda/metabolismo , Hipertrofia Ventricular Izquierda/fisiopatología , Ligadura , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Fosforilación , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
7.
Am J Physiol Regul Integr Comp Physiol ; 321(3): R513-R521, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34346721

RESUMEN

Experiments aimed to evaluate the tissue distribution of Mas-related G protein-coupled receptor D (MrgD) revealed the presence of immunoreactivity for the MrgD protein in the rostral insular cortex (rIC), an important area for autonomic and cardiovascular control. To investigate the relevance of this finding, we evaluated the cardiovascular effects produced by the endogenous ligand of MrgD, alamandine, in this brain region. Mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA) were recorded in urethane anesthetized rats. Unilateral microinjection of equimolar doses of alamandine (40 pmol/100 nL), angiotensin-(1-7), angiotensin II, angiotensin A, and Mas/MrgD antagonist d-Pro7-Ang-1-7 (50 pmol/100 nL), Mas antagonist A779 (100 pmol/100 nL), or vehicle (0.9% NaCl) were made in different rats (n = 4-6/group) into rIC. To verify the specificity of the region, a microinjection of alamandine was also performed into intermediate insular cortex (iIC). Microinjection of alamandine in rIC produced an increase in MAP (Δ = 15 ± 2 mmHg), HR (Δ = 36 ± 4 beats/min), and RSNA (Δ = 31 ± 4%), but was without effects at iIC. Strikingly, an equimolar dose of angiotensin-(1-7) at rIC did not produce any change in MAP, HR, and RSNA. Angiotensin II and angiotensin A produced only minor effects. Alamandine effects were not altered by A-779, a Mas antagonist, but were completely blocked by the Mas/MrgD antagonist d-Pro7-Ang-(1-7). Therefore, we have identified a brain region in which alamandine/MrgD receptor but not angiotensin-(1-7)/Mas could be involved in the modulation of cardiovascular-related neuronal activity. This observation also suggests that alamandine might possess unique effects unrelated to angiotensin-(1-7) in the brain.


Asunto(s)
Angiotensina I/farmacología , Presión Arterial/efectos de los fármacos , Sistema Cardiovascular/inervación , Corteza Cerebral/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Riñón/inervación , Proteínas del Tejido Nervioso/agonistas , Oligopéptidos/farmacología , Fragmentos de Péptidos/farmacología , Receptores Acoplados a Proteínas G/agonistas , Sistema Nervioso Simpático/efectos de los fármacos , Animales , Corteza Cerebral/fisiología , Ligandos , Masculino , Microinyecciones , Proteínas del Tejido Nervioso/metabolismo , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas/agonistas , Proteínas Proto-Oncogénicas/metabolismo , Ratas Sprague-Dawley , Receptores Acoplados a Proteínas G/metabolismo , Sistema Nervioso Simpático/fisiología
8.
Exp Physiol ; 106(8): 1710-1719, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33998067

RESUMEN

NEW FINDINGS: What is the central question of this study? Eccentric contraction exercises cause damage to muscle fibres and induce inflammatory responses. The exacerbation of this process can induce deposition of fibrous connective tissue, leading to decreased muscle function. The aim of this study was to examine the role of angiotensin-(1-7) in this context. What is the main finding and its importance? Our results show that oral treatment with angiotensin-(1-7) decreases muscle damage induced by eccentric exercise, reducing inflammation and fibrosis in the gastrocnemius and soleus muscles. This study shows a potential effect of angiotensin-(1-7) for the prevention of muscle injuries induced by physical exercise. ABSTRACT: Eccentric contraction exercises cause damage to the muscle fibres and induce an inflammatory reaction. The protective effect of angiotensin-(1-7) [Ang-(1-7)] in skeletal muscle has led us to examine the role of this peptide in modifying processes associated with inflammation and fibrogenesis induced by eccentric exercise. In this study, we sought to investigate the effects of oral administration of Ang-(1-7) formulated in hydroxypropyl ß-cyclodextrin (HPß-CD) in prevention and treatment of muscle damage after downhill running. Male Wistar rats were divided into three groups: control (untreated and not exercised; n = 10); treated/exercised HPß-CD Ang-(1-7) (n = 40); and treated/exercised HPß-CD (n = 40). Exercised groups were subjected to a single eccentric contraction exercise session on a treadmill inclined to -13° at a constant speed of 20 m/min, for 60 min. Oral administration of HPß-CD Ang-(1-7) and HPß-CD was performed 3 h before the exercise protocol and daily as a single dose, until the end of the experiment. Samples were collected 4, 12, 24, 48 and 72 h after the exercise session. The animals treated with the Ang-(1-7) showed lower levels of creatine kinase, lower levels of tumor necrosis factor-α in soleus muscle and increased levels of interleukin-10 cytokines. The inflammatory cells and deposition of fibrous connective tissue in soleus and gastrocnemius muscles were lower in the group treated with Ang-(1-7). The results of this study show that treatment with an oral formulation of Ang-(1-7) enhances the process of repair of muscle injury induced by eccentric exercise.


Asunto(s)
Condicionamiento Físico Animal , Administración Oral , Angiotensina I , Animales , Fibrosis , Masculino , Músculo Esquelético/fisiología , Fragmentos de Péptidos , Condicionamiento Físico Animal/fisiología , Ratas , Ratas Wistar
9.
Clin Sci (Lond) ; 134(23): 3063-3078, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33264412

RESUMEN

In 2020 we are celebrating the 20th anniversary of the angiotensin-converting enzyme 2 (ACE2) discovery. This event was a landmark that shaped the way that we see the renin-angiotensin system (RAS) today. ACE2 is an important molecular hub that connects the RAS classical arm, formed mainly by the octapeptide angiotensin II (Ang II) and its receptor AT1, with the RAS alternative or protective arm, formed mainly by the heptapeptides Ang-(1-7) and alamandine, and their receptors, Mas and MrgD, respectively. In this work we reviewed classical and modern literature to describe how ACE2 is a critical component of the protective arm, particularly in the context of the cardiac function, coagulation homeostasis and immune system. We also review recent literature to present a critical view of the role of ACE2 and RAS in the SARS-CoV-2 pandemic.


Asunto(s)
Enzima Convertidora de Angiotensina 2/efectos de los fármacos , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Tratamiento Farmacológico de COVID-19 , Sistema Renina-Angiotensina/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , COVID-19/virología , Humanos , Oligopéptidos/farmacología , Sistema Renina-Angiotensina/fisiología , SARS-CoV-2/patogenicidad
10.
Am J Physiol Heart Circ Physiol ; 316(5): H958-H970, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30707614

RESUMEN

Thirty years ago, a novel axis of the renin-angiotensin system (RAS) was unveiled by the discovery of angiotensin-(1-7) [ANG-(1-7)] generation in vivo. Later, angiotensin-converting enzyme 2 (ACE2) was shown to be the main mediator of this reaction, and Mas was found to be the receptor for the heptapeptide. The functional analysis of this novel axis of the RAS that followed its discovery revealed numerous protective actions in particular for cardiovascular diseases. In parallel, similar protective actions were also described for one of the two receptors of ANG II, the ANG II type 2 receptor (AT2R), in contrast to the other, the ANG II type 1 receptor (AT1R), which mediates deleterious actions of this peptide, e.g., in the setting of cardiovascular disease. Very recently, another branch of the RAS was discovered, based on angiotensin peptides in which the amino-terminal aspartate was replaced by alanine, the alatensins. Ala-ANG-(1-7) or alamandine was shown to interact with Mas-related G protein-coupled receptor D, and the first functional data indicated that this peptide also exerts protective effects in the cardiovascular system. This review summarizes the presentations given at the International Union of Physiological Sciences Congress in Rio de Janeiro, Brazil, in 2017, during the symposium entitled "The Renin-Angiotensin System: Going Beyond the Classical Paradigms," in which the signaling and physiological actions of ANG-(1-7), ACE2, AT2R, and alatensins were reported (with a focus on noncentral nervous system-related tissues) and the therapeutic opportunities based on these findings were discussed.


Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Sistema Cardiovascular/metabolismo , Sistema Renina-Angiotensina , Transducción de Señal , Angiotensina I/metabolismo , Enzima Convertidora de Angiotensina 2 , Animales , Fármacos Cardiovasculares/uso terapéutico , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/fisiopatología , Sistema Cardiovascular/efectos de los fármacos , Sistema Cardiovascular/fisiopatología , Congresos como Asunto , Humanos , Oligopéptidos/metabolismo , Fragmentos de Péptidos/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Receptor de Angiotensina Tipo 2/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sistema Renina-Angiotensina/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
11.
Clin Sci (Lond) ; 133(5): 629-643, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30737255

RESUMEN

Aims: The renin-angiotensin system (RAS) plays an important role in the pathophysiology of vascular diseases, especially as a mediator of inflammation and tissue remodelling. Alamandine (Ala1-angiotensin-(1-7)) is a new biologically active peptide from the RAS, interacting with Mas-related G-protein-coupled receptor member D. Although a growing number of studies reveal the cardioprotective effects of alamandine, there is a paucity of data on its participation in vascular remodelling associated events. In the present study, we investigated the effects of alamandine on ascending aorta remodelling after transverse aortic constriction (TAC) in mice. Methods and results: C57BL/6J male mice were divided into the following groups: Sham (sham-operated), TAC (operated) and TAC+ALA (operated and treated with alamandine-HPßCD (2-Hydroxypropyl-ß-cyclodextrin), 30 µg/kg/day, by gavage). Oral administration of alamandine for 14 days attenuated arterial remodelling by decreasing ascending aorta media layer thickness and the cells density in the adventitia induced by TAC. Alamandine administration attenuated ascending aorta fibrosis induced by TAC, through a reduction in the following parameters; total collagen deposition, expression collagen III and transforming growth factor-ß (TGF-ß) transcripts, matrix metalloproteinases (MMPs) activity and vascular expression of MMP-2. Importantly, alamandine decreased vascular expression of proinflammatory genes as CCL2, tumour necrosis factor α (TNF-α) and interleukin-1ß (IL-1ß), and was able to increase expression of MRC1 and FIZZ1, pro-resolution markers, after TAC surgery. Conclusion: Alamandine treatment attenuates vascular remodelling after TAC, at least in part, through anti-fibrotic and anti-inflammatory effects. Hence, this work opens new avenues for the use of this heptapeptide also as a therapeutic target for vascular disease.


Asunto(s)
Antiinflamatorios/farmacología , Aorta Torácica/efectos de los fármacos , Enfermedades de la Aorta/prevención & control , Oligopéptidos/farmacología , Remodelación Vascular/efectos de los fármacos , Animales , Aorta Torácica/metabolismo , Aorta Torácica/patología , Aorta Torácica/fisiopatología , Enfermedades de la Aorta/metabolismo , Enfermedades de la Aorta/patología , Enfermedades de la Aorta/fisiopatología , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Fibrosis , Mediadores de Inflamación/metabolismo , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones Endogámicos C57BL , Receptor de Angiotensina Tipo 1/genética , Receptor de Angiotensina Tipo 1/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Sistema Renina-Angiotensina/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
12.
Mediators Inflamm ; 2019: 2401081, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30918468

RESUMEN

The renin-angiotensin system (RAS) peptides play an important role in inflammation. Resolution of inflammation contributes to restore tissue homeostasis, and it is characterized by neutrophil apoptosis and their subsequent removal by macrophages, which are remarkable plastic cells involved in the pathophysiology of diverse inflammatory diseases. However, the effects of RAS peptides on different macrophage phenotypes are still emerging. Here, we evaluated the effects of angiotensin-(1-7) (Ang-(1-7)) and the most novel RAS peptide, alamandine, on resting (M0), proinflammatory M(LPS+IFN-γ), and anti-inflammatory M(IL-4) macrophage phenotypes in vitro, as well as on specific immune cell populations and macrophage subsets into the pleural cavity of LPS-induced pleurisy in mice. Our results showed that Ang-(1-7) and alamandine, through Mas and MrgD receptors, respectively, do not affect M0 macrophages but reduce the proinflammatory TNF-α, CCL2, and IL-1ß transcript expression levels in LPS+IFN-γ-stimulated macrophages. Therapeutic administration of these peptides in LPS-induced inflammation in mice decreased the number of neutrophils and M1 (F4/80lowGr1+CD11bmed) macrophage frequency without affecting the other investigated macrophage subsets. Our data suggested that both Ang-(1-7) and alamandine, through their respective receptors Mas and MrgD, promote an anti-inflammatory reprogramming of M(LPS+IFN-γ)/M1 macrophages under inflammatory circumstances and potentiate the reprogramming induced by IL-4. In conclusion, our work sheds light on the emerging proresolving properties of Ang-(1-7) and alamandine, opening new avenues for the treatment of inflammatory diseases.


Asunto(s)
Angiotensina I/farmacología , Antiinflamatorios/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Oligopéptidos/farmacología , Fragmentos de Péptidos/farmacología , Animales , Células Cultivadas , Interleucina-4/farmacología , Masculino , Ratones , Ratones Endogámicos BALB C , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
13.
Chin J Physiol ; 62(5): 226-230, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31670287

RESUMEN

Angiotensin-(1-7) (Ang-[1-7]) can modulate glucose metabolism and protect against muscular damage. The aim of this study was to investigate the influence of lifetime increase of circulating levels of Ang-(1-7) at exhaustive swimming exercise (ESE). Sprague-Dawley (SD) and transgenic rats TGR(A1-7)3292 (TR) which overproduce Ang-(1-7) (2.5-fold increase) were submitted to ESE. The data showed no differences in time to exhaustion (SD: 4.90 ± 1.37 h vs. TR: 5.15 ± 1.15 h), creatine kinase, and transforming growth factor beta (TGF-ß). Lactate dehydrogenase (SD: 219.9 ± 12.04 U/L vs. TR: 143.9 ± 35.21 U/L) and α-actinin (SD: 336.7 ± 104.5 U/L vs. TR: 224.6 ± 82.45 U/L) values were significantly lower in TR. There was a significant decrease in the range of blood glucose levels (SD: -41.4 ± 28.32 mg/dl vs. TR: -13.08 ± 39.63 mg/dl) in SD rats. Muscle (SD: 0.06 ± 0.02 mg/g vs. TR: 0.13 ± 0.01 mg/g) and hepatic glycogen (SD: 0.66 ± 0.36 mg/g vs. TG: 2.24 ± 1.85 mg/g) in TR were higher. The TR presented attenuation of the increase in skeletal muscle damage biomarkers and of the changes in glucose metabolism after ESE.


Asunto(s)
Músculo Esquelético , Angiotensina I , Animales , Biomarcadores , Fragmentos de Péptidos , Ratas , Ratas Sprague-Dawley
14.
Clin Sci (Lond) ; 132(11): 1117-1133, 2018 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-29685981

RESUMEN

Patients with hyperthyroidism exhibit increased risk of development and progression of cardiac diseases. The activation of the renin-angiotensin system (RAS) has been indirectly implicated in these cardiac effects observed in hyperthyroidism. Angiotensin-(1-7) (Ang-(1-7)) has previously been shown to counterbalance pathological effects of angiotensin II (Ang II). The aim of the present study was to investigate the effects of elevated circulating Ang-(1-7) levels on cardiac effects promoted by hyperthyroidism in a transgenic rat (TG) model that constitutively overexpresses an Ang-(1-7)-producing fusion protein [TGR(A1-7)3292]. TG and wild-type (WT) rats received daily injections (i.p.) of triiodothyronine (T3; 7 µg/100 g of body weight (BW)) or vehicle for 14 days. In contrast with WT rats, the TG rats did not develop cardiac hypertrophy after T3 treatment. Indeed, TG rats displayed reduced systolic blood pressure (SBP) and cardiac hyperdynamic condition induced by hyperthyroidism. Moreover, increased plasma levels of Ang II observed in hyperthyroid WT rats were prevented in TG rats. TG rats were protected from glycogen synthase kinase 3ß (GSK3ß) inactivation and nuclear factor of activated T cells (NFAT) nuclear accumulation induced by T3. In vitro studies evidenced that Ang-(1-7) prevented cardiomyocyte hypertrophy and GSK3ß inactivation induced by T3. Taken together, these data reveal an important cardioprotective action of Ang-(1-7) in experimental model of hyperthyroidism.


Asunto(s)
Angiotensina I/fisiología , Cardiomegalia/etiología , Glucógeno Sintasa Quinasa 3 beta/fisiología , Hipertiroidismo/complicaciones , Factores de Transcripción NFATC/fisiología , Fragmentos de Péptidos/fisiología , Angiotensina I/sangre , Angiotensina I/farmacología , Animales , Cardiomegalia/sangre , Cardiomegalia/diagnóstico por imagen , Células Cultivadas , Ecocardiografía , Hipertiroidismo/sangre , Hipertiroidismo/inducido químicamente , Masculino , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Fragmentos de Péptidos/sangre , Fragmentos de Péptidos/farmacología , Ratas Sprague-Dawley , Ratas Transgénicas , Ratas Wistar , Sistema Renina-Angiotensina/fisiología , Transducción de Señal/fisiología , Triyodotironina/farmacología
15.
Mol Cell Biochem ; 444(1-2): 43-52, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29204818

RESUMEN

Lung tumors are a frequent type of cancer in humans and a leading cause of death, and the late diagnostic contributes to high mortality rates. New therapeutic strategies are needed, and the heptapeptide angiotensin-(1-7) [ang-(1-7)] demonstrated the ability to control cancer growth rates and migration in vitro and in vivo. However, the possible use of the heptapeptide in clinical trials demands deeper analyses to elucidate molecular mechanisms of its effect in the target cells. In this study, we investigated relevant elements that control pro-inflammatory environment and cellular migration, focusing in the post-transcription mechanism using lung tumor cell line. In our cellular model, the microRNA-513a-3p was identified as a novel element targeting ITG-ß8, thereby controlling the protein level and its molecular function in the controlling of migration and pro-inflammatory environment. These findings provide useful information for future studies, using miR-513a-3p as an innovative molecular tool to control lung tumor cell migration, which will support more effective clinical treatment of the patients with the widely used chemotherapeutic agents, increasing survival rates.


Asunto(s)
Movimiento Celular , Cadenas beta de Integrinas/metabolismo , Neoplasias Pulmonares/metabolismo , MicroARNs/metabolismo , Modelos Biológicos , Proteínas de Neoplasias/metabolismo , ARN Neoplásico/metabolismo , Células A549 , Humanos , Cadenas beta de Integrinas/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , MicroARNs/genética , Proteínas de Neoplasias/genética , ARN Neoplásico/genética
16.
Nanomedicine ; 14(3): 781-788, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29278747

RESUMEN

There are multiple challenges for neuropharmacology in the future. Undoubtedly, one of the greatest challenges is the development of strategies for pharmacological targeting of specific brain regions for treatment of diseases. GABA is the main inhibitory neurotransmitter in the central nervous system, and dysfunction of GABAergic mechanisms is associated with different neurological conditions. Liposomes are lipid vesicles that are able to encapsulate chemical compounds and are used for chronic drug delivery. This short review reports our experience with the development of liposomes for encapsulation and chronic delivery of GABA to sites within the brain. Directions for future research regarding the efficacy and practical use of GABA-containing liposomes for extended periods of time as well as understanding and targeting neurological conditions are discussed.


Asunto(s)
Sistemas de Liberación de Medicamentos , Liposomas/administración & dosificación , Enfermedades del Sistema Nervioso/terapia , Ácido gamma-Aminobutírico/administración & dosificación , Animales , Humanos , Liposomas/química , Ácido gamma-Aminobutírico/química
17.
Int J Sports Med ; 39(10): 743-748, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29940668

RESUMEN

The development of new strategies to attenuate exercise-induced muscle damage may be helpful for training regimens. The aim of this study was to determine whether a oral formulation of angiotensin Ang-(1-7)[HPßCD/Ang-(1-7)] is effective to reduce pain, and muscle damage markers after eccentric-overload exercise. HPßCD (Placebo) and HPßCD/Ang-(1-7) (Ang-(1-7) group were treated for 7 days (one capsule/day). The pain was measured by visual analogue scale, maximal strength (MS) using force platform. Blood samples were collected for cytokines and creatine kinase (CK) analysis. The Ang-(1-7)-treated group reported less pain immediately (3.46±0.64 vs. placebo 3.80±0.77 cm) and 24 h after exercise (3.07±0.71 vs. 3.73±0.58 cm placebo) and higher MS at 24 h (24±12 N) and 48 h (30±15 N) vs. placebo (-8±9 N and -10±9 N). The CK for Ang-(1-7) (0.5±0.1 and 0.9±0.2 U/L) were lower at 48 and 72 h vs. placebo (fold changes of 1.7±0.5 and 1.5±0.3 U/L). The TNF-α level was lower in the treated group post-exercise (38±2.5 pg/ml) vs. placebo (45±2.9 pg/ml) but no significant changes were observed for IL-6 and IL-10. Our data indicate that treatment with Ang-(1-7) may attenuate pain, some of the muscle damage markers and improves performance following eccentric exercise.


Asunto(s)
Angiotensina I/uso terapéutico , Suplementos Dietéticos , Ejercicio Físico/fisiología , Músculo Esquelético/lesiones , Mialgia/prevención & control , Fragmentos de Péptidos/uso terapéutico , 2-Hidroxipropil-beta-Ciclodextrina , Adulto , Biomarcadores/sangre , Creatina Quinasa/sangre , Citocinas/sangre , Método Doble Ciego , Excipientes , Prueba de Esfuerzo , Femenino , Humanos , Leucocitos Mononucleares/metabolismo , Masculino , Fuerza Muscular/fisiología , ARN Mensajero/metabolismo , Adulto Joven
19.
Stress ; 20(2): 189-196, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28288545

RESUMEN

Angiotensin II (Ang II) acts as a pro-stress hormone, while other evidence indicates that angiotensin-(1-7) [Ang-(1-7)] attenuates physiological responses to emotional stress. To further test this hypothesis, in groups of 5-6 rats we evaluated autonomic, cardiovascular and behavioral parameters in male Sprague-Dawley (SD) and transgenic TGR(A1-7)3292 (TG) rats chronically overexpressing Ang-(1-7). Compared to SD rats, TG rats showed reduced baseline heart rate (HR; SD 380 ± 16 versus TG 329 ± 9 beats per minute (bpm), mean ± standard error of mean, p < .05) and renal sympathetic discharge (SD 138 ± 4 versus TG 117 ± 5 spikes/second, p < .05). TG rats had an attenuated tachycardic response to acute air-puff stress (ΔHR: SD 51 ± 20 versus TG 1 ± 3 bpm; p < .05), which was reversed by intracerebroventricular injection of the Mas receptor antagonist, A-779 (ΔHR: SD 51 ± 20 versus TG 63 ± 15 bpm). TG rats showed less anxious behavior on the elevated plus maze, as revealed by more entries into open arms (SD 2 ± 2 versus TG 47 ± 5% relative to total entries; p < .05), and more time spent in the open arms (SD 5 ± 4 versus TG 53 ± 9% relative to total time, p < .05). By contrast with SD rats, diazepam (1.5 mg/kg, intraperitoneally) did not further reduce anxious behavior in TG rats, indicating a ceiling anxiolytic effect of Ang-(1-7) overexpression. Ang-(1-7) concentrations in hypothalamus and plasma, measured by mass spectrometry were two- and three-fold greater, respectively, in TG rats than in SD rats. Hence, increased endogenous Ang-(1-7) levels in TG rats diminishes renal sympathetic outflow and attenuates cardiac reactivity to emotional stress, which may be via central Mas receptors, and reduces anxious behavior. Lay summaryWe used a genetically modified rat model that produces above normal amounts of a peptide hormone called angiotensin-(1-7) to test whether this peptide can reduce some of the effects of stress. We found that angiotensin-(1-7), acting in the brain, can reduce anxiety and reduce the increase in heart rate associated with emotional stress. These findings may provide a lead for design of new drugs to reduce stress.


Asunto(s)
Angiotensina I/genética , Ansiedad/genética , Frecuencia Cardíaca/fisiología , Fragmentos de Péptidos/genética , Estrés Psicológico/fisiopatología , Angiotensina II/análogos & derivados , Angiotensina II/farmacología , Animales , Animales Modificados Genéticamente , Frecuencia Cardíaca/efectos de los fármacos , Masculino , Fragmentos de Péptidos/farmacología , Ratas , Ratas Sprague-Dawley
20.
Clin Sci (Lond) ; 130(24): 2305-2316, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27624141

RESUMEN

Previous studies have demonstrated a protective effect of the Ang-(1-7)/Mas receptor axis on pathological cardiac hypertrophy. Also, the involvement of Mas receptor in exercise-induced cardiac hypertrophy has been suggested. However, the role of the Ang-(1-7)/Mas receptor on pregnancy-induced cardiac remodelling remains unknown. The objective of the present study was to evaluate the participation of the Mas receptor in the development of the cardiac hypertrophy and fibrosis induced by gestation. Female Wistar rats were divided in three groups: control, pregnant and pregnant treated with Mas receptor antagonist A-779. Wild-type (WT) and Mas-knockout (KO) mice were distributed in non-pregnant and pregnant groups. Systolic blood pressure (SBP) was measured by tail-cuff plethysmography. The medial part of the left ventricle (LV) was collected for histological analysis. Echocardiographic analysis was used to evaluate cardiac function. SBP was not changed by pregnancy or A-779 treatment in the Wistar rats. Pharmacological blockade or genetic deletion of Mas receptor attenuates the pregnancy-induced myocyte hypertrophy. The treatment with A-779 or genetic deletion of the Mas receptor increased the collagen III deposition in LV from pregnant animals without changing fibroblast proliferation. KO mice presented a lower ejection fraction (EF), fractional shortening (FS) and stroke volume (SV) and higher end systolic volume (ESV) compared with WT. Interestingly, pregnancy restored these parameters. In conclusion, these data show that although Mas receptor blockade or deletion decreases physiological hypertrophy of pregnancy, it is associated with more extracellular matrix deposition. These alterations are associated with improvement of cardiac function through a Mas-independent mechanism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA