Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Exp Eye Res ; 240: 109791, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38253307

RESUMEN

The cornea is a fundamental ocular tissue for the sense of sight. Thanks to it, the refraction of two-thirds of light manages to participate in the visual process and protect against mechanical damage. Because it is transparent, avascular, and innervated, the cornea comprises five main layers: Epithelium, Bowman's layer, stroma, Descemet's membrane, and endothelium. Each layer plays a key role in the functionality and maintenance of ocular tissue, providing unique ultrastructural and biomechanical properties. Bullous Keratopathy (BK) is an endothelial dysfunction that leads to corneal edema, loss of visual acuity, epithelial blisters, and severe pain, among other symptoms. The corneal layers are subject to changes in their biophysical properties promoted by Keratopathy. In this context, the Atomic Force Microscopy (AFM) technique in air was used to investigate the anterior epithelial surface and the posterior endothelial surface, healthy and with BK, using a triangular silicone tip with a nominal spring constant of 0.4 N/m. Six human corneas (n = 6) samples were used for each analyzed group. Roughness data, calculated by third-order polynomial adjustment, adhesion, and Young's modulus, were obtained to serve as a comparison and identification of morphological and biomechanical changes possibly associated with the pathology, such as craters and in the epithelial layer and exposure of a fibrotic layer due to loss of the endothelial cell wall. Endothelial cell membrane area and volume data were calculated, obtaining a relevant comparison between the control and patient. Such results may provide new data on the physical properties of the ocular tissue to understand the physiology of the cornea when it has pathology.


Asunto(s)
Enfermedades de la Córnea , Edema Corneal , Humanos , Endotelio Corneal/metabolismo , Lámina Limitante Posterior/metabolismo , Edema Corneal/metabolismo , Córnea/patología , Enfermedades de la Córnea/patología
2.
Int J Mol Sci ; 24(12)2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37373170

RESUMEN

This work is related to the environmental toxicology risk assessment and evaluation of the possible transformation of carbon-based nanomaterials (CNMs) after contact with marine microalgae. The materials used in the study represent common and widely applied multi-walled carbon nanotubes (CNTs), fullerene (C60), graphene (Gr), and graphene oxide (GrO). The toxicity was evaluated as growth rate inhibition, esterase activity, membrane potential, and reactive oxygen species generation changes. The measurement was performed with flow cytometry after 3, 24, 96 h, and 7 days. The biotransformation of nanomaterials was evaluated after 7 days of microalgae cultivation with CNMs by FTIR and Raman spectroscopy. The calculated toxic level (EC50 in mg/L, 96 h) of used CNMs reduced in the following order: CNTs (18.98) > GrO (76.77) > Gr (159.40) > C60 (414.0). Oxidative stress and membrane depolarization were the main toxic action of CNTs and GrO. At the same time, Gr and C60 decreased the toxic action with time and had no negative impact on microalgae after 7 days of exposure even at the concentration of 125 mg/L. Moreover, C60 and Gr after 7 days of contact with microalgae cells obtained structural deformations.


Asunto(s)
Fulerenos , Microalgas , Nanoestructuras , Nanotubos de Carbono , Nanotubos de Carbono/toxicidad , Fulerenos/toxicidad , Nanoestructuras/toxicidad , Biotransformación
3.
Artículo en Inglés | MEDLINE | ID: mdl-38650740

RESUMEN

Graphene quantum dots (GQDs), are biocompatible materials, with mechanical strength and stability. Chitosan, has antibacterial and anti-inflammatory properties, and biocompatibility. Wound healing is a challenging process especially in chronic diseases and infection. In this study, films consisting of chitosan and graphene quantum dots were developed for application in infected wounds. The chitosan-graphene films were prepared in the acidic solution followed by slow solvent evaporation and drying. The chitosan-graphene films were characterized by the scanning electron microscopy, x-ray diffraction, atomic force microscopy, Raman spectroscopy and thermogravimetric analysis. The films' was evaluated by the wound healing assays, hemolytic potential, and nitrite production, cytokine production and swelling potential. The obtained films were flexible and well-structured, promoting cell migration, greater antibacterial activity, lower hemolytic activity, and maintaining wound moisture. Our data suggested that the use of graphene quantum dot-containing chitosan films would be an efficient and promising way in combating wounds.

4.
Int J Mol Sci ; 23(2)2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35055175

RESUMEN

The investigation of the combined toxic action of different types of nanoparticles (NPs) and their interaction between each other and with aquatic organisms is an important problem of modern ecotoxicology. In this study, we assessed the individual and mixture toxicities of cadmium and zinc sulfides (CdS and ZnS), titanium dioxide (TiO2), and two types of mesoporous silicon dioxide (with no inclusions (SMB3) and with metal inclusions (SMB24)) by a microalga growth inhibition bioassay. The counting and size measurement of microalga cells and NPs were performed by flow cytometry. The biochemical endpoints were measured by a UV-VIS microplate spectrophotometer. The highest toxicity was observed for SMB24 (EC50, 3.6 mg/L) and CdS (EC50, 21.3 mg/L). A combined toxicity bioassay demonstrated that TiO2 and the SMB3 NPs had a synergistic toxic effect in combinations with all the tested samples except SMB24, probably caused by a "Trojan horse effect". Sample SMB24 had antagonistic toxic action with CdS and ZnS, which was probably caused by metal ion scavenging.


Asunto(s)
Microalgas/crecimiento & desarrollo , Óxidos/toxicidad , Sulfuros/toxicidad , Contaminantes Químicos del Agua/toxicidad , Compuestos de Cadmio/toxicidad , Interacciones Farmacológicas , Microalgas/efectos de los fármacos , Nanopartículas , Dióxido de Silicio/toxicidad , Titanio/toxicidad , Compuestos de Zinc/toxicidad
5.
Int J Mol Sci ; 23(14)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35887181

RESUMEN

The cornea is an avascular, innervated, and transparent tissue composed of five layers: the epithelium, Bowman's layer, stroma, Descemet's membrane, and endothelium. It is located in the outermost fraction of the eyeball and is responsible for the refraction of two-thirds of light and protection from external mechanical damage. Although several studies have been done on the cornea on the macroscopic scale, there is a lack of studies on the micro-nanoscopic scale, especially an analysis evaluating the cornea layer by layer. In this study, atomic force microscopy (AFM) was employed to assess four layers that form the cornea, analyzing: adhesion, stiffness, and roughness. The results showed microvilli in the epithelial and endothelial layers, pores in the basement membrane, and collagen fibers in the Stroma. These data increase the knowledge about the human cornea layers' ultrastructures and adds new information about its biophysical properties.


Asunto(s)
Córnea , Fenómenos Biomecánicos , Endotelio , Epitelio , Humanos , Microscopía de Fuerza Atómica
6.
Molecules ; 27(16)2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-36014590

RESUMEN

This study aimed to investigate different types of morphologies obtained using the electrospinning process to produce a material that enables wound healing while performing a controlled release. Using benign solvents, the authors prepared and characterised electrospun polycaprolactone mats loaded with propolis, a popular extract in traditional medicine with potential for skin repair. Different morphologies were obtained from distinct storage periods of the solution before electrospinning to investigate the effect of PCL hydrolysis (average diameters of fibres and beads: 159.2-280.5 nm and 1.9-5.6 µm, respectively). Phytochemical and FTIR analyses of the extract confirmed propolis composition. GPC and viscosity analyses showed a decrease in polymer molecular weight over the storage period (about a 70% reduction over 14 days) and confirmed that it was responsible for the nanostructure diversity. Moreover, propolis acted as a lubricant agent, affecting the spun solutions' viscosity and the thermal properties and hydrophilicity of the mats. All samples were within the value range of the water vapour transpiration rate of the commercial products (1263.08 to 2179.84 g/m2·day). Even though the presence of beads did not affect the propolis release pattern, an in vitro wound-healing assay showed that propolis-loaded mats composed of beaded fibres increased the cell migration process. Thus, these films could present the potential for use in wound dressing applications.


Asunto(s)
Nanofibras , Nanoestructuras , Própolis , Nanofibras/química , Extractos Vegetales/farmacología , Poliésteres , Própolis/farmacología , Cicatrización de Heridas
7.
Eur J Nucl Med Mol Imaging ; 49(1): 336-344, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34370060

RESUMEN

Rheumatoid arthritis (RA) is an inflammatory chronic autoimmune disease. The treatment of RA is difficult and, in many cases, ineffective, and the arsenal of drugs is limited. Due the longevity of the disease, RA may cause extreme musculoskeletal disorders with a high impact on quality of life. Also, RA is related with severe comorbidities decreasing the life expectancy. Finally, RA has been reported to impact in economy and healthy public. In this direction, the necessity to discover new strategies to efficiently treat RA is immediate. In this direction, we have reported the use of low doses of [223Ra] RaCl2 (radium dichloride) as intra-articular injection to treat RA. Mice were post-treated with [223Ra] RaCl2 (1.48 µCi; i.a.) 24 h after zymosan stimulus. Zymosan-induced arthrithis is responsible for leucocyte recruitment (total leukocytes, neutrophils, and mononuclear cells), which were inhibited by intra-articular injection of [223Ra] RaCl2 (69%, 77%, and 66%, respectively).


Asunto(s)
Artritis , Radio (Elemento) , Animales , Antiinflamatorios , Artritis/inducido químicamente , Artritis/tratamiento farmacológico , Inyecciones Intraarticulares , Ratones , Calidad de Vida
8.
Langmuir ; 37(36): 10762-10769, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34351770

RESUMEN

The ongoing outbreak of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) started in late 2019 and spread across the world, infecting millions of people, with over 3.3 million deaths worldwide. To fight back the virus, it is necessary to understand how the main structures work, especially those responsible for the virus infectivity pathogenicity. Here, using the most advanced atomic force microscopy techniques, SARS-CoV-2 viral particles were analyzed, with a special focus on their ultrastructure, adsorption conformation, and nanomechanical behavior. The results uncovered the aspects of the organization and the spatial distribution of the proteins on the surface of the viral particles. It also showed the compliant behavior of the membrane and ability to recover from mechanical injuries. At least three layers composing the membrane and their thickness were measured, protecting the virus from external stress. This study provides new insight into the ultrastructure of SARS-CoV-2 particles at the nanoscale, offering new prospects that could be employed for mapping viral surfaces. The understanding of the viruses' capacity to survive mechanical disruptions at any level and their ability to recover from such injuries can shed a light on the structure-function relationship and help us to find targets for drug action, especially for this virus that, to this day, has no course of treatment approved.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Virión
9.
Pharm Res ; 38(2): 335-346, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33604784

RESUMEN

PURPOSE: Melanoma is an invasive and very aggressive skin cancer due to its multi-drug resistance that results in poor patient survival. There is a need to test new treatment approaches to improve therapeutic efficacy and reduce side effects of conventional treatments. METHODS: PLA/PVA nanoparticles carrying both Dacarbazine and zinc phthalocyanine was produced by double emulsion technique. The characterization was performed by dynamic light scattering and atomic force microscopy. In vitro photodynamic therapy test assay using MV3 melanoma cells as a model has been performed. In vitro cell viability (MTT) was performed to measure cell toxicity of of nanoparticles with and without drugs using human endothelial cells as a model. The in vivo assay (biodistribution/tissue deposition) has been performed using radiolabeled PLA/PVA NPs. RESULTS: The nanoparticles produced showed a mean diameter of about 259 nm with a spherical shape. The in-vitro photodynamic therapy tests demonstrated that the combination is critical to enhance the therapeutic efficacy and it is dose dependent. The in vitro cell toxicity assay using endothelial cells demonstrated that the drug encapsulated into nanoparticles had no significant toxicity compared to control samples. In-vivo results demonstrated that the drug loading affects the biodistribution of the nanoparticle formulations (NPs). Low accumulation of the NPs into the stomach, heart, brain, and kidneys suggested that common side effects of Dacarbazine could be reduced. CONCLUSION: This work reports a robust nanoparticle formulation with the objective to leveraging the synergistic effects of chemo and photodynamic therapies to potentially suppressing the drug resistance and reducing side effects associated with Dacarbazine. The data corroborates that the dual encapsulated NPs showed better in-vitro efficacy when compared with the both compounds alone. The results support the need to have a dual modality NP formulation for melanoma therapy by combining chemotherapy and photodynamic therapy.


Asunto(s)
Antineoplásicos Alquilantes/administración & dosificación , Portadores de Fármacos/química , Melanoma/tratamiento farmacológico , Fármacos Fotosensibilizantes/administración & dosificación , Neoplasias Cutáneas/tratamiento farmacológico , Animales , Antineoplásicos Alquilantes/efectos adversos , Antineoplásicos Alquilantes/farmacocinética , Línea Celular Tumoral , Supervivencia Celular , Dacarbazina/administración & dosificación , Dacarbazina/farmacocinética , Composición de Medicamentos/métodos , Células Endoteliales , Humanos , Isoindoles/administración & dosificación , Isoindoles/farmacocinética , Masculino , Melanoma/patología , Ratones , Nanopartículas/química , Compuestos Organometálicos/administración & dosificación , Compuestos Organometálicos/farmacocinética , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacocinética , Poliésteres/química , Alcohol Polivinílico/química , Neoplasias Cutáneas/patología , Distribución Tisular , Compuestos de Zinc/administración & dosificación , Compuestos de Zinc/farmacocinética
10.
Nanotechnology ; 32(43)2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34271563

RESUMEN

The urgency for new materials in oncology is immediate. In this study we have developed the g-C3N4, a graphitic-like structure formed by periodically linked tris-s-triazine units. The g-C3N4has been synthesized by a simple and fast thermal process. XRD has shown the formation of the crystalline sheet with a compacted structure. The graphite-like structure and the functional groups have been shown by Raman and FTIR spectroscopy. TEM image and AFM revealed the porous composed of five or six C-N layers stacked. DRS and Photoluminescence analyses confirmed the structure with band gap of 2.87 eV and emission band at 448 nm in different wavelengths excitation conditions. The biological results showed inhibitory effect on cancer cell lines and non-toxic effect in normal cell lines. To the best of our knowledge, this is the first work demonstrating the cytotoxic effects of 2D g-C3N4in a cancer cell line, without any external or synergistic influence. The biodistribution/tissue accumulation showed that g-C3N4present a tendency to accumulation on the lung in the first 2 h, but after 24 h the profile of the biodistribution change and it is found mainly in the liver. Thus, 2D-g-C3N4showed great potential for the treatment of several cancer types.


Asunto(s)
Supervivencia Celular , Grafito/síntesis química , Grafito/metabolismo , Compuestos de Nitrógeno/síntesis química , Compuestos de Nitrógeno/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral , Humanos , Distribución Tisular
11.
Molecules ; 26(18)2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34576919

RESUMEN

Ultrasound (US) and X-ray imaging are diagnostic methods that are commonly used to image internal body structures. Several organic and inorganic imaging contrast agents are commercially available. However, their synthesis and purification remain challenging, in addition to posing safety issues. Here, we report on the promise of widespread, safe, and easy-to-produce particulate calcium fluoride (part-CaF2) as a bimodal US and X-ray contrast agent. Pure and highly crystalline part-CaF2 is obtained using a cheap commercial product. Scanning electron microscopy (SEM) depicts the morphology of these particles, while energy-dispersive X-ray spectroscopy (EDS) confirms their chemical composition. Diffuse reflectance ultraviolet-visible spectroscopy highlights their insulating behavior. The X-ray diffraction (XRD) pattern reveals that part-CaF2 crystallizes in the face-centered cubic cell lattice. Further analyses regarding peak broadening are performed using the Scherrer and Williamson-Hall (W-H) methods, which pinpoint the small crystallite size and the presence of lattice strain. X-ray photoelectron spectroscopy (XPS) solely exhibits specific peaks related to CaF2, confirming the absence of any contamination. Additionally, in vitro cytotoxicity and in vivo maximum tolerated dose (MTD) tests prove the biocompatibility of part-CaF2. Finally, the results of the US and X-ray imaging tests strongly signal that part-CaF2 could be exploited in bimodal bioimaging applications. These findings may shed a new light on calcium fluoride and the opportunities it offers in biomedical engineering.


Asunto(s)
Materiales Biocompatibles , Fluoruro de Calcio , Cristalización
12.
Artículo en Inglés | MEDLINE | ID: mdl-34457042

RESUMEN

The use of graphene quantum dots as biomedical device and drug delivery system has been increasing. This nanoplatform of pure carbon has showed unique properties and showed to be safe for human use. The imatinib is a molecule designed to specifically inhibit the tyrosine kinase, used for leukemia treatment. In this study, we successfully decorated the graphene quantum dots (GQDs@imatinb) by a carbodiimide crosslinking reaction. The GQDs@imatinb were characterized by FTIR and AFM. The nanoparticles' in vitro behaviors were evaluated by cellular trafficking (internalization) assay and cell viability and apoptosis assays in various cancer cell lines, including suspension (leukemia) cells and adherent cancer cells. The results showed that the incorporation of the imatinib on the surface of the graphene quantum dots did not change the nanoparticles' morphology and properties. The GQDs@imatinb could be efficiently internalized and kill cancer cells via the induction of apoptosis. The data indicated that the prepared GQDs@imatinb might be a great drug nano-platform for cancer, particularly leukemia treatments.

13.
Pharm Res ; 37(3): 40, 2020 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-31970499

RESUMEN

PURPOSES: Senescence is an inevitable and irreversible process, which may lead to loss in muscle and bone density, decline in brain volume and loss in renal clearance. Although aging is a well-known process, few studies on the consumption of nanodrugs by elderly people were performed. METHODS: We evaluated three different nanosystems: i) carbon based nanosystem (Graphene Quantum Dots, GQD), ii) polymeric nanoparticles and mesoporous silica (magnetic core mesoporous silica, MMSN). In previous studies, our group has already characterized GQD and MMSN nanoparticles by dynamic light scattering analysis, atomic force microscopy, transmission electron microscopy, X-ray diffraction, Raman analysis, fluorescence and absorbance. The polymeric nanoparticle has been characterized by AFM and DLS. All the nanosystems were radiolabeled with 99 m-Tc by. The in vivo biodistribution/tissue deposition analysis evaluation was done using elder (PN270) and young (PN90) mice injected with radioactive nanosystems. RESULTS: The nanosystems used in this study were well-formed as the radiolabeling processes were stable. Biodistribution analysis showed that there is a decrease in the uptake of the nanoparticles in elder mice when compared to young mice, showing that is necessary to increase the initial dose in elder people to achieve the same concentration when compared to young animals. CONCLUSION: The discrepancy on tissue distribution of nanosystems between young and elder individuals must be monitored, as the therapeutic effect will be different in the groups. Noteworthy, this data is an alarm that some specific conditions must be evaluated before commercialization of nano-drugs. Graphical Abstract Changes between younger and elderly individuals are undoubtedly, especially in drug tissue deposition, biodistribution and pharmacokinetics. The same thought should be applied to nanoparticles. A comprehensive analysis on how age discrepancy change the biological behavior of nanoparticles has been performed.


Asunto(s)
Grafito/química , Nanopartículas/química , Nanopartículas/metabolismo , Poliésteres/química , Dióxido de Silicio/química , Factores de Edad , Animales , Marcaje Isotópico , Nanopartículas de Magnetita/química , Ratones , Modelos Animales , Nanopartículas/administración & dosificación , Tamaño de la Partícula , Porosidad , Propiedades de Superficie , Tecnecio/química , Distribución Tisular
14.
Int J Mol Sci ; 21(7)2020 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-32290047

RESUMEN

The cancer multidrug resistance is involved in the failure of several treatments during cancer treatment. It is a phenomenon that has been receiving great attention in the last years due to the sheer amount of mechanisms discovered and involved in the process of resistance which hinders the effectiveness of many anti-cancer drugs. Among the mechanisms involved in the multidrug resistance, the participation of ATP-binding cassette (ABC) transporters is the main one. The ABC transporters are a group of plasma membrane and intracellular organelle proteins involved in the process of externalization of substrates from cells, which are expressed in cancer. They are involved in the clearance of intracellular metabolites as ions, hormones, lipids and other small molecules from the cell, affecting directly and indirectly drug absorption, distribution, metabolism and excretion. Other mechanisms responsible for resistance are the signaling pathways and the anti- and pro-apoptotic proteins involved in cell death by apoptosis. In this study we evaluated the influence of three nanosystem (Graphene Quantum Dots (GQDs), mesoporous silica (MSN) and poly-lactic nanoparticles (PLA)) in the main mechanism related to the cancer multidrug resistance such as the Multidrug Resistance Protein-1 and P-glycoprotein. We also evaluated this influence in a group of proteins involved in the apoptosis-related resistance including cIAP-1, XIAP, Bcl-2, BAK and Survivin proteins. Last, colonogenic and MTT (3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide) assays have also been performed. The results showed, regardless of the concentration used, GQDs, MSN and PLA were not cytotoxic to MDA-MB-231 cells and showed no impairment in the colony formation capacity. In addition, it has been observed that P-gp membrane expression was not significantly altered by any of the three nanomaterials. The results suggest that GQDs nanoparticles would be suitable for the delivery of other multidrug resistance protein 1 (MRP1) substrate drugs that bind to the transporter at the same binding pocket, while MSN can strongly inhibit doxorubicin efflux by MRP1. On the other hand, PLA showed moderate inhibition of doxorubicin efflux by MRP1 suggesting that this nanomaterial can also be useful to treat MDR (Multidrug resistance) due to MRP1 overexpression.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Resistencia a Múltiples Medicamentos , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Antineoplásicos/administración & dosificación , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Técnica del Anticuerpo Fluorescente , Expresión Génica , Grafito/química , Humanos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Nanopartículas/química , Nanoestructuras/química , Nanomedicina Teranóstica
15.
Pharm Res ; 36(10): 143, 2019 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-31385111

RESUMEN

PURPOSE: Pancreatic Polypeptide-secreting tumor of the distal pancreas (PPoma) is a rare, difficult and indolent type of cancer with a survival rate of 5-year in only 10% of all cases. The PPoma is classified as a neuroendocrine tumor (NET) not functioning that overexpresses SSTR 2 (somatostatin receptor subtype 2). Thus, in order to improve the diagnosis of this type of tumor, we developed nanoparticulate drug carriers based on poly-lactic acid (PLA) polymer loaded with octreotide and radiolabeled with Technetium-99 m (99mTc). METHODS: PLA/PVA octreotide nanoparticles were developed by double-emulsion technique. These nanoparticles were characterized by Atomic Force Microscopy (AFM) and Dynamic Light Scattering (DLS) and radiolabeled with 99mTc by the direct via forming 99mTc-PLA/PVA octreotide nanoparticles. The safety of these nanosystems was evaluated by the MTT cell toxicity assay and their in vivo biodistribution was evaluated in xenografted inducted animals. RESULTS: The results showed that a 189 nm sized nanoparticle were formed with a PDI of 0,097, corroborating the monodispersive behavior. These nanoparticles were successfully radiolabeled with 99mTc showing uptake by the inducted tumor. The MTT assay corroborated the safety of the nanosystem for the cells. CONCLUSION: The results support the use of this nanosystem (99mTc-PLA/PVA octreotide nanoparticles) as imaging agent for PPoma. Graphical Abstract Polypeptide-Secreting Tumor of the Distal Pancreas (PPoma) Radiolabeled Nanoparticles for Imaging.


Asunto(s)
Carcinoma Ductal Pancreático/diagnóstico por imagen , Nanopartículas/química , Octreótido/química , Neoplasias Pancreáticas/diagnóstico por imagen , Polipéptido Pancreático/metabolismo , Poliésteres/química , Radiofármacos/química , Tecnecio/química , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Nanopartículas/metabolismo , Octreótido/metabolismo , Páncreas/diagnóstico por imagen , Páncreas/metabolismo , Neoplasias Pancreáticas/metabolismo , Tamaño de la Partícula , Cintigrafía/métodos , Radiofármacos/metabolismo , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo , Distribución Tisular , Neoplasias Pancreáticas
16.
Nanotechnology ; 30(34): 345102, 2019 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-30965299

RESUMEN

Vesicular nanosystems are versatile and they are able to encapsulate actives with different solubilities, such as lipophilic and hydrophilic compounds. The most well-known vesicular nanosystems are liposomes and niosomes, the last one is formed by non-ionic surfactants. In the present work, we developed photoprotective niosomes containing sunscreens (octyl methoxycinnamate, diethylamino hydroxybenzoyl hexyl benzoate and phenylbenzimidazole sulfonic acid), non-ionic surfactants, cholesterol and stearylamine (positive-charged lipid). Studies based on dynamic light scattering techniques, entrapment efficiency and morphology by transmission electron microscopy were performed to characterize the niosomes. In addition, rheology, pH, in vitro sun protection factor (SPF) efficacy and toxicity and in vivo and in vitro safety were determined for the niosome formulations F-N1 and F-N2. The mean sizes of N1 and N2 were 168 ± 5 nm and 192 ± 8 nm, respectively, and their morphologies were spherical, unilamellar and with an entrapment efficiency of more than 45% for each sunscreen. Both formulations, F-N1 and F-N2 presented characteristics of pseudoplastic non-Newtonian fluids, showing declining viscosity with increasing shear rate applied. SPF values were considered satisfactory, 34 ± 8 for formulation F-N1 and 34 ± 5 for F-N2. The formulations did not present toxicity when tested in macrophages and the pH was compatible with skin, which minimizes allergies. The in vitro safety assay showed lipophilic sunscreens greater affinity for the epidermis, since this layer contains natural lipids. In vivo safety assay suggests that the increased skin retention of N2 is directly correlated with the positive charge of stearylamine. Stable photoprotective niosomes were obtained and were shown to be promising nanostructures to be used against solar radiation.


Asunto(s)
Liposomas/química , Nanoestructuras/química , Protectores Solares/química , Animales , Supervivencia Celular/efectos de los fármacos , Cinamatos/química , Composición de Medicamentos , Módulo de Elasticidad , Concentración de Iones de Hidrógeno , Ratones , Tamaño de la Partícula , Células RAW 264.7 , Ratas , Reología , Piel/efectos de los fármacos , Piel/metabolismo , Piel/efectos de la radiación , Factor de Protección Solar , Protectores Solares/metabolismo , Protectores Solares/farmacología , Rayos Ultravioleta , Viscosidad
17.
Nanotechnology ; 30(42): 425101, 2019 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-31290755

RESUMEN

Increasing resistance to current fungicides is a clinical problem that leads to the need for new treatment strategies. Clove oil (CO) has already been described as having antifungal action. However, it should not be applied directly to the skin as it may be irritating. One option for CO delivery and suitable topical application would be nanoemulsions (NEs). NEs have advantages such as decreased irritant effects and lower dose use. The purpose of this work was the development of NEs containing CO and in vitro evaluation against Candida albicans and Candida glabrata. The NEs were produced by an ultrasonic processor with different proportions of CO and Pluronic® F-127. In order to determine the best composition and ultrasound amplitude, an experimental design was performed. For the evaluation, droplet size and polydispersity index (PdI) were used. After the stability study, in vitro activity against C. albicans and C. glabrata was evaluated. NEs selected for the stability study, with diameter <40 nm and PdI <0.2, remained stable for 420 d. Activity against Candida spp. was improved when the CO was nanoemulsified, for it possibly leads to a better interaction between the active and the microorganisms, mainly in C. albicans.


Asunto(s)
Aceite de Clavo/química , Emulsiones/química , Nanoestructuras/química , Candida albicans/efectos de los fármacos , Candida glabrata/efectos de los fármacos , Aceite de Clavo/farmacología , Estabilidad de Medicamentos , Concentración de Iones de Hidrógeno , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula , Poloxámero/química , Sonicación
18.
Am J Ther ; 26(1): e12-e17, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30601770

RESUMEN

BACKGROUND: Leishmaniasis is a neglected disease endemic in tropical and subtropical areas, with an incidence about 1.6 million cases/year. The first-line treatment of this disease is pentavalent antimony, and the second-line are pentamidine and amphotericin B. All the treatments available cause severe side effects and often have difficulty in accessing parasites within infected cells. STUDY QUESTION: This study aimed to determine if the use of nanoparticles loaded with meglumine antimoniate could reach and targeting infected organs with leishmaniasis, reducing the dosage used and promoting less adverse effects. STUDY DESIGN: This study was performed comparing the meglumine nanoparticle in two experimental groups. The first one healthy mice and the second one inducted mice (leishmaniasis). MEASURES AND OUTCOMES: The nanoparticles loaded with meglumine antimoniate (nanoantimony) were prepared by double-emulsion solvent evaporation method and showed a size of about 150-200 nm. BALB/c mice infected or not with Leishmania amazonensis (cutaneous leishmaniasis model) or Leishmania infantum (visceral leishmaniasis model) was used to access the biodistribution of nanoantimony and meglumine antimoniate labeled with technetium-99m. RESULTS: The biodistribution profiles showed a preferential targeting of the nanoparticles to the liver, spleen, and lungs. Because these are the main organs infected, the nanoparticle may be used for this purpose. The results for cutaneous leishmaniasis showed a low uptake by the lesion (infected region). CONCLUSIONS: The results demonstrated the potential use of these nanoparticles to improve the efficacy of meglumine antimoniate in the treatment of visceral leishmaniasis, indicating their potential as an alternative therapeutic strategy for leishmaniasis infections.


Asunto(s)
Antiprotozoarios/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Leishmaniasis Cutánea/tratamiento farmacológico , Leishmaniasis Visceral/tratamiento farmacológico , Antimoniato de Meglumina/administración & dosificación , Animales , Modelos Animales de Enfermedad , Humanos , Leishmania infantum/patogenicidad , Leishmania mexicana/patogenicidad , Leishmaniasis Cutánea/parasitología , Leishmaniasis Visceral/parasitología , Antimoniato de Meglumina/farmacocinética , Ratones , Ratones Endogámicos BALB C , Nanopartículas/química , Poliésteres/química , Tecnecio/química , Distribución Tisular , Resultado del Tratamiento
19.
Int J Mol Sci ; 21(1)2019 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-31905708

RESUMEN

: Nanodrugs have in recent years been a subject of great debate. In 2017 alone, almost 50 nanodrugs were approved for clinical use worldwide. Despite the advantages related to nanodrugs/nanomedicine, there is still a lack of information regarding the biological safety, as the real behavior of these nanodrugs in the body. In order to better understand these aspects, in this study, we evaluated the effect of polylactic acid (PLA) nanoparticles (NPs) and magnetic core mesoporous silica nanoparticles (MMSN), of 1000 nm and 50 nm, respectively, on human cells. In this direction we evaluated the cell cycle, cytochemistry, proliferation and tubulogenesis on tumor cells lines: from melanoma (MV3), breast cancer (MCF-7, MDA-MB-213), glioma (U373MG), prostate (PC3), gastric (AGS) and colon adenocarcinoma (HT-29) and non-tumor cell lines: from human melanocyte (NGM), fibroblast (FGH) and endothelial (HUVEC), respectively. The data showed that an acute exposure to both, polymeric nanoparticles or MMSN, did not show any relevant toxic effects on neither tumor cells nor non-tumor cells, suggesting that although nanodrugs may present unrevealed aspects, under acute exposition to human cells they are harmless.


Asunto(s)
Nanopartículas/toxicidad , Ciclo Celular , Proliferación Celular , Óxido Ferrosoférrico/química , Fibroblastos/metabolismo , Fibroblastos/fisiología , Células HT29 , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/fisiología , Humanos , Células MCF-7 , Nanopartículas/química , Poliésteres/química , Dióxido de Silicio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA