Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 22(23): 9470-9476, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36455210

RESUMEN

Materials for studying biological interactions and for alternative energy applications are continuously under development. Semiconductor quantum dots are a major part of this landscape due to their tunable optoelectronic properties. Size-dependent quantum confinement effects have been utilized to create materials with tunable bandgaps and Auger recombination rates. Other mechanisms of electronic structural control are under investigation as not all of a material's characteristics are affected by quantum confinement. Demonstrated here is a new structure-property concept that imparts the ability to spatially localize electrons or holes within a core/shell heterostructure by tuning the charge carrier's kinetic energy on a parabolic potential energy surface. This charge carrier separation results in extended radiative lifetimes and in continuous emission at the single-nanoparticle level. These properties enable new applications for optics, facilitate novel approaches such as time-gated single-particle imaging, and create inroads for the development of other new advanced materials.


Asunto(s)
Nanopartículas , Puntos Cuánticos , Puntos Cuánticos/química , Nanopartículas/química , Semiconductores , Electrones , Electrónica
3.
ACS Biomater Sci Eng ; 9(8): 4686-4697, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37450411

RESUMEN

Streptococcus mutans is one of the key etiological factors in tooth-borne biofilm development that leads to dental caries in the presence of fermentable sugars. We previously reported on the ability of acid-stabilized nanoceria (CeO2-NP) produced by the hydrolysis of ceric salts to limit biofilm adherence of S. mutans via non-bactericidal mechanism(s). Herein, we report a chondroitin sulfate A (CSA) formulation (CeO2-NP-CSA) comprising nanoceria aggregates that promotes resistance to bulk precipitation under a range of conditions with retention of the biofilm-inhibiting activity, allowing for a more thorough mechanistic study of its bioactivity. The principal mechanism of reduced in vitro biofilm adherence of S. mutans by CeO2-NP-CSA is the production of nonadherent cell clusters. Additionally, dose-dependent in vitro human cell toxicity studies demonstrated no additional toxicity beyond that of equimolar doses of sodium fluoride, currently utilized in many oral health products. This study represents a unique approach and use of a nanoceria aggregate formulation with implications for promoting oral health and dental caries prevention as an adjunctive treatment.


Asunto(s)
Caries Dental , Streptococcus mutans , Humanos , Caries Dental/prevención & control , Biopelículas , Análisis por Conglomerados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA