Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 49(13): 7644-7664, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34181727

RESUMEN

Protein oligomerization is one mechanism by which homogenous solutions can separate into distinct liquid phases, enabling assembly of membraneless organelles. Survival Motor Neuron (SMN) is the eponymous component of a large macromolecular complex that chaperones biogenesis of eukaryotic ribonucleoproteins and localizes to distinct membraneless organelles in both the nucleus and cytoplasm. SMN forms the oligomeric core of this complex, and missense mutations within its YG box domain are known to cause Spinal Muscular Atrophy (SMA). The SMN YG box utilizes a unique variant of the glycine zipper motif to form dimers, but the mechanism of higher-order oligomerization remains unknown. Here, we use a combination of molecular genetic, phylogenetic, biophysical, biochemical and computational approaches to show that formation of higher-order SMN oligomers depends on a set of YG box residues that are not involved in dimerization. Mutation of key residues within this new structural motif restricts assembly of SMN to dimers and causes locomotor dysfunction and viability defects in animal models.


Asunto(s)
Proteínas del Complejo SMN/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Secuencia Conservada , Dimerización , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiología , Humanos , Locomoción , Modelos Moleculares , Mutación , Mutación Puntual , Dominios Proteicos , Multimerización de Proteína , Proteínas del Complejo SMN/genética , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética
2.
RNA ; 26(9): 1094-1103, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32385138

RESUMEN

N6-threonylcarbamoyl adenosine (t6A) is a nucleoside modification found in all kingdoms of life at position 37 of tRNAs decoding ANN codons, which functions in part to restrict translation initiation to AUG and suppress frameshifting at tandem ANN codons. In Bacteria the proteins TsaB, TsaC (or C2), TsaD, and TsaE, comprise the biosynthetic apparatus responsible for t6A formation. TsaC(C2) and TsaD harbor the relevant active sites, with TsaC(C2) catalyzing the formation of the intermediate threonylcarbamoyladenosine monophosphate (TC-AMP) from ATP, threonine, and CO2, and TsaD catalyzing the transfer of the threonylcarbamoyl moiety from TC-AMP to A37 of substrate tRNAs. Several related modified nucleosides, including hydroxynorvalylcarbamoyl adenosine (hn6A), have been identified in select organisms, but nothing is known about their biosynthesis. To better understand the mechanism and structural constraints on t6A formation, and to determine if related modified nucleosides are formed via parallel biosynthetic pathways or the t6A pathway, we carried out biochemical and biophysical investigations of the t6A systems from E. coli and T. maritima to address these questions. Using kinetic assays of TsaC(C2), tRNA modification assays, and NMR, our data demonstrate that TsaC(C2) exhibit relaxed substrate specificity, producing a variety of TC-AMP analogs that can differ in both the identity of the amino acid and nucleotide component, whereas TsaD displays more stringent specificity, but efficiently produces hn6A in E. coli and T. maritima tRNA. Thus, in organisms that contain modifications such as hn6A in their tRNA, we conclude that their origin is due to formation via the t6A pathway.


Asunto(s)
Adenosina/análogos & derivados , Vías Biosintéticas/genética , Nucleósidos/genética , ARN de Transferencia/genética , Adenosina/genética , Adenosina Monofosfato/genética , Adenosina Trifosfato/genética , Aminoácidos/genética , Dominio Catalítico/genética , Escherichia coli/genética , Conformación Proteica , Especificidad por Sustrato/genética , Thermotoga maritima/genética , Treonina/genética
3.
J Biol Chem ; 290(31): 19273-86, 2015 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-26060252

RESUMEN

Aminoglycosides are a well known antibiotic family used to treat bacterial infections in humans and animals, but which can be toxic. By binding to the decoding site of helix44 of the small subunit RNA of the bacterial ribosome, the aminoglycoside antibiotics inhibit protein synthesis, cause misreading, or obstruct peptidyl-tRNA translocation. Although aminoglycosides bind helix69 of the bacterial large subunit RNA as well, little is known about their interaction with the homologous human helix69. To probe the role this binding event plays in toxicity, changes to thermal stability, base stacking, and conformation upon aminoglycoside binding to the human cytoplasmic helix69 were compared with those of the human mitochondrial and Escherichia coli helix69. Surprisingly, binding of gentamicin and kanamycin A to the chemically synthesized terminal hairpins of the human cytoplasmic, human mitochondrial, and E. coli helix69 revealed similar dissociation constants (1.3-1.7 and 4.0-5.4 µM, respectively). In addition, aminoglycoside binding enhanced conformational stability of the human mitochondrial helix69 by increasing base stacking. Proton one-dimensional and two-dimensional NMR suggested significant and specific conformational changes of human mitochondrial and E. coli helix69 upon aminoglycoside binding, as compared with human cytoplasmic helix69. The conformational changes and similar aminoglycoside binding affinities observed for human mitochondrial helix69 and E. coli helix69, as well as the increase in structural stability shown for the former, suggest that this binding event is important to understanding aminoglycoside toxicity.


Asunto(s)
Antibacterianos/química , Gentamicinas/química , Kanamicina/química , ARN Ribosómico/química , ARN/química , Escherichia coli , Humanos , Secuencias Invertidas Repetidas , Estabilidad del ARN , ARN Bacteriano/química , ARN Mitocondrial
4.
J Biol Chem ; 290(33): 20185-99, 2015 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-26092730

RESUMEN

The survival motor neuron (SMN) protein forms the oligomeric core of a multiprotein complex required for the assembly of spliceosomal small nuclear ribonucleoproteins. Deletions and mutations in the SMN1 gene are associated with spinal muscular atrophy (SMA), a devastating neurodegenerative disease that is the leading heritable cause of infant mortality. Oligomerization of SMN is required for its function, and some SMA patient mutations disrupt the ability of SMN to self-associate. Here, we investigate the oligomeric nature of the SMN·Gemin2 complexes from humans and fission yeast (hSMN·Gemin2 and ySMN·Gemin2). We find that hSMN·Gemin2 forms oligomers spanning the dimer to octamer range. The YG box oligomerization domain of SMN is both necessary and sufficient to form these oligomers. ySMN·Gemin2 exists as a dimer-tetramer equilibrium with Kd = 1.0 ± 0.9 µM. A 1.9 Å crystal structure of the ySMN YG box confirms a high level of structural conservation with the human ortholog in this important region of SMN. Disulfide cross-linking experiments indicate that SMN tetramers are formed by self-association of stable, non-dissociating dimers. Thus, SMN tetramers do not form symmetric helical bundles such as those found in glycine zipper transmembrane oligomers. The dimer-tetramer nature of SMN complexes and the dimer of dimers organization of the SMN tetramer provide an important foundation for ongoing studies to understand the mechanism of SMN-assisted small nuclear ribonucleoprotein assembly and the underlying causes of SMA.


Asunto(s)
Biopolímeros/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Secuencia de Aminoácidos , Biopolímeros/química , Humanos , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/química , Polimerizacion , Proteínas de Unión al ARN/química , Homología de Secuencia de Aminoácido , Proteína 1 para la Supervivencia de la Neurona Motora/química
5.
J Biol Chem ; 290(33): 20032-43, 2015 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-26060251

RESUMEN

The hypermodified nucleoside N(6)-threonylcarbamoyladenosine (t(6)A37) is present in many distinct tRNA species and has been found in organisms in all domains of life. This post-transcriptional modification enhances translation fidelity by stabilizing the anticodon/codon interaction in the ribosomal decoding site. The biosynthetic pathway of t(6)A37 is complex and not well understood. In bacteria, the following four proteins have been discovered to be both required and sufficient for t(6)A37 modification: TsaC, TsaD, TsaB, and TsaE. Of these, TsaC and TsaD are members of universally conserved protein families. Although TsaC has been shown to catalyze the formation of L-threonylcarbamoyl-AMP, a key intermediate in the biosynthesis of t(6)A37, the details of the enzymatic mechanism remain unsolved. Therefore, the solution structure of Escherichia coli TsaC was characterized by NMR to further study the interactions with ATP and L-threonine, both substrates of TsaC in the biosynthesis of L-threonylcarbamoyl-AMP. Several conserved amino acids were identified that create a hydrophobic binding pocket for the adenine of ATP. Additionally, two residues were found to interact with L-threonine. Both binding sites are located in a deep cavity at the center of the protein. Models derived from the NMR data and molecular modeling reveal several sites with considerable conformational flexibility in TsaC that may be important for L-threonine recognition, ATP activation, and/or protein/protein interactions. These observations further the understanding of the enzymatic reaction catalyzed by TsaC, a threonylcarbamoyl-AMP synthase, and provide structure-based insight into the mechanism of t(6)A37 biosynthesis.


Asunto(s)
Adenosina Monofosfato/metabolismo , Ligasas/química , Ligasas/metabolismo , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Especificidad por Sustrato , Treonina/metabolismo
6.
Biochem J ; 445(3): 361-70, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22607171

RESUMEN

In humans, assembly of spliceosomal snRNPs (small nuclear ribonucleoproteins) begins in the cytoplasm where the multi-protein SMN (survival of motor neuron) complex mediates the formation of a seven-membered ring of Sm proteins on to a conserved site of the snRNA (small nuclear RNA). The SMN complex contains the SMN protein Gemin2 and several additional Gemins that participate in snRNP biosynthesis. SMN was first identified as the product of a gene found to be deleted or mutated in patients with the neurodegenerative disease SMA (spinal muscular atrophy), the leading genetic cause of infant mortality. In the present study, we report the solution structure of Gemin2 bound to the Gemin2-binding domain of SMN determined by NMR spectroscopy. This complex reveals the structure of Gemin2, how Gemin2 binds to SMN and the roles of conserved SMN residues near the binding interface. Surprisingly, several conserved SMN residues, including the sites of two SMA patient mutations, are not required for binding to Gemin2. Instead, they form a conserved SMN/Gemin2 surface that may be functionally important for snRNP assembly. The SMN-Gemin2 structure explains how Gemin2 is stabilized by SMN and establishes a framework for structure-function studies to investigate snRNP biogenesis as well as biological processes involving Gemin2 that do not involve snRNP assembly.


Asunto(s)
Proteínas del Complejo SMN/química , Proteína 1 para la Supervivencia de la Neurona Motora/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Mutagénesis Sitio-Dirigida , Resonancia Magnética Nuclear Biomolecular , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas del Complejo SMN/genética , Dispersión del Ángulo Pequeño , Homología de Secuencia de Aminoácido , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/química , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Difracción de Rayos X
7.
J Mol Biol ; 432(4): 913-929, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31945376

RESUMEN

Three of six arginine codons (CGU, CGC, and CGA) are decoded by two Escherichia coli tRNAArg isoacceptors. The anticodon stem and loop (ASL) domains of tRNAArg1 and tRNAArg2 both contain inosine and 2-methyladenosine modifications at positions 34 (I34) and 37 (m2A37). tRNAArg1 is also modified from cytidine to 2-thiocytidine at position 32 (s2C32). The s2C32 modification is known to negate wobble codon recognition of the rare CGA codon by an unknown mechanism, while still allowing decoding of CGU and CGC. Substitution of s2C32 for C32 in the Saccharomyces cerevisiae tRNAIleIAU anticodon stem and loop domain (ASL) negates wobble decoding of its synonymous A-ending codon, suggesting that this function of s2C at position 32 is a generalizable property. X-ray crystal structures of variously modified ASLArg1ICG and ASLArg2ICG constructs bound to cognate and wobble codons on the ribosome revealed the disruption of a C32-A38 cross-loop interaction but failed to fully explain the means by which s2C32 restricts I34 wobbling. Computational studies revealed that the adoption of a spatially broad inosine-adenosine base pair at the wobble position of the codon cannot be maintained simultaneously with the canonical ASL U-turn motif. C32-A38 cross-loop interactions are required for stability of the anticodon/codon interaction in the ribosomal A-site.


Asunto(s)
Codón/genética , Citidina/análogos & derivados , ARN de Transferencia/metabolismo , Biología Computacional , Cristalografía por Rayos X , Citidina/metabolismo , Inosina/metabolismo , Nucleósidos/metabolismo , ARN/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Termodinámica
8.
Biomolecules ; 7(1)2017 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-28300792

RESUMEN

RNAs are central to all gene expression through the control of protein synthesis. Four major nucleosides, adenosine, guanosine, cytidine and uridine, compose RNAs and provide sequence variation, but are limited in contributions to structural variation as well as distinct chemical properties. The ability of RNAs to play multiple roles in cellular metabolism is made possible by extensive variation in length, conformational dynamics, and the over 100 post-transcriptional modifications. There are several reviews of the biochemical pathways leading to RNA modification, but the physicochemical nature of modified nucleosides and how they facilitate RNA function is of keen interest, particularly with regard to the contributions of modified nucleosides. Transfer RNAs (tRNAs) are the most extensively modified RNAs. The diversity of modifications provide versatility to the chemical and structural environments. The added chemistry, conformation and dynamics of modified nucleosides occurring at the termini of stems in tRNA's cloverleaf secondary structure affect the global three-dimensional conformation, produce unique recognition determinants for macromolecules to recognize tRNAs, and affect the accurate and efficient decoding ability of tRNAs. This review will discuss the impact of specific chemical moieties on the structure, stability, electrochemical properties, and function of tRNAs.


Asunto(s)
Conformación de Ácido Nucleico , Nucleósidos/química , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Anticodón/química , Metilación , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA