Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Nanosci Nanotechnol ; 19(9): 5692-5699, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-30961726

RESUMEN

We report on the effect of α-Fe2O3 phase in the magnetic properties and magnetic interactions in nickel ferrite (NiFe2O4-NFO) nanoparticles synthesized by co-precipitation method. Structural analysis confirms the formation of the cubic inverse spinel phase without any impurities for the NFO sample annealed in air at 650 °C. When the annealing temperature is increased to 750 °C and 850 °C, α-Fe2O3 impurity phase is formed along with the parent NFO phase. Raman spectra recorded at room temperature (RT) confirm the presence of pure NFO phase for the sample annealed at 650 °C, and presence of α-Fe2O3 phase is observed in the samples annealed at 750 °C and 850 °C. Saturation magnetization values at RT for the NFO samples annealed at 650 °C, 750 °C and 850 °C are 34 emu/g, 19 emu/g and 28 emu/g respectively. Zero Field Cooled (ZFC) and Field Cooled (FC) measurement reveals the super-paramagnetic behavior along with competing magnetic interactions in all the samples. For the NFO sample annealed at 750 °C and 850 °C, a drop in ZFC magnetization and a small kink in FC magnetization observed around 245 K indicate the presence of a Morin transition (TM) from the α-Fe2O3 phase. Anisotropy constants were calculated for all the samples using the law of approach to saturation (LAS) method. The magnetocrystalline anisotropy energy distribution function for the NFO samples annealed at 750 °C and 850 °C exhibit broad peak due to the random distribution of spins associated with different particle size.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA