Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Res ; 216(Pt 1): 114494, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36209786

RESUMEN

The present work demonstrates a facile route for synthesizing the organic nanoparticles (ONPs) and the blue fluorescent Quantum Dots (QDs) based on an organic molecule named (E)-(4-fluorophenyl)-1,1-diamino-2,3-diazabuta-1,3-diene. The synthesis process possesses advantages viz green synthesis, non-toxic degraded products, and amount of organic compound. Initially, the ONPs were prepared using the nanoprecipitation method and were screened for their recognition potential against various pesticides, however, no selectivity has been observed. This motivated us to tune the ONPs into QDs. The QDs were prepared using the hydrothermal method and a color change was observed in the QDs solution under daylight and under a UV lamp. The emission wavelength was observed at 400 nm (λexcitation = 278 nm). The synthesized QDs exhibited selective sensing potential towards imidacloprid via a quenching mechanism. A normalised decrement in the luminescence intensity of QDs was observed on raising the concentration of imidacloprid and a good linear response was noticed over a concentration varies from 1 µM to 100 µM with a regression coefficient of 0.99. The detection limit was estimated to be 4.53 nM and quantification limit was calculated to be and 13.72 nM.


Asunto(s)
Puntos Cuánticos , Puntos Cuánticos/química , Neonicotinoides , Nitrocompuestos , Luminiscencia
2.
Nanotechnology ; 34(8)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36368025

RESUMEN

Nowadays, the greener pathways for the synthesis of nanostructures are being explored. The extracts of different parts of plantsvizleaves, stems, and roots have been investigated. However, these extracts have been prepared by simply boiling or microwaving, or sonicating the parts of plants with water. Therefore, to have deeper insight and to investigate the full potential of plant extracts, serial extraction of leaves of sea buckthorn (Hippophae rhamnoides L.) which is a medicinally important plant was attempted using the soxhlet apparatus. The as-obtained polyphenolic-rich extract was employed for the preparation of silver nanoparticles (Ag-NPs). Under optimized reaction conditionsviz60 °C temperature and 500µl of extract solution (5 mg ml-1) highly disperse spherical nanoparticles of the average size of 15.8 ± 4.8 nm were obtained. Further, the optical band gap of Ag-NPs prepared using optimized reaction conditions was found to be 2.6 eV using the Tauc equation. Additionally, to understand the reduction by the extract, kinetic studies were also carried out which suggest the predominant occurrence of pseudo-first-order reaction. Furthermore, the mechanism of formation of Ag-NPs using major components of extractvizgallic acid and catechin which were identified by HPLC were also investigated using DFT. The mechanistic investigation was performed for both the keto-enol and radical-mediated preparation of Ag-NPs. Such theoretical investigations will help in the efficient designing of greener and novel routes for the synthesis of Ag-NPs. Additionally, the prepared silver was also employed for the colorimetric detection of H2O2.


Asunto(s)
Hippophae , Nanopartículas del Metal , Plata , Cinética , Peróxido de Hidrógeno
4.
Crit Rev Anal Chem ; 53(4): 751-774, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34605318

RESUMEN

The worldwide pollution of water bodies by potential contaminants such as heavy metals, dyes, and pesticides etc. have severely affected the entire eco-system due to their toxic mobility and tough degradation in water. Consequently, there is a requirement to develop cost-competitive and easily handleable sensing materials which can detect targets sensitively and with selectivity. Among the low-cost sensory materials, carbon dots (CDs) constitute an important class of carbon nanomaterial with unique photostability, electronic and fluorescent properties. This review is an effort to comprehend the recent improvements in the sensing applications of CDs with prominence on synthetic routes, the effect of various synthesis parameters on physical properties (quantum yield, size range), detection mechanisms, and detection parameters (limit of detection, interference etc.). Particularly, the scope and progress for the detection of potential water contaminants using CDs have been explored and a holistic view of mechanisms of their detection has been included.


Holistic view of mechanisms for different types of signals generated by CDs.


Asunto(s)
Puntos Cuánticos , Agua , Colorantes Fluorescentes , Carbono
5.
Nanoscale Adv ; 4(20): 4210-4236, 2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36321156

RESUMEN

In the last decade, the whole scientific community has witnessed great advances and progress in the various fields of nanoscience. Among the different nanomaterials, zirconia nanomaterials have found numerous applications as nanocatalysts, nanosensors, adsorbents, etc. Additionally, their exceptional biomedical applications in dentistry and drug delivery, and interesting biological properties, viz. anti-microbial, antioxidant, and anti-cancer activity, have further motivated the researchers to explore their physico-chemical properties using different synthetic pathways. With such an interest in zirconia-based nanomaterials, the present review focuses systematically on different synthesis approaches and their impact on the structure, size, shape, and morphology of these nanomaterials. Broadly, there are two approaches, viz., chemical synthesis which includes hydrothermal, solvothermal, sol-gel, microwave, solution combustion, and co-precipitation methods, and a greener approach which employs bacteria, fungus, and plant parts for the preparation of zirconia nanoparticles. In this review article, the aforementioned methods have been critically analyzed for obtaining specific phases and shapes. The review also incorporates a detailed survey of the applications of zirconia-based nanomaterials. Furthermore, the influence of specific phases, morphology, and the comparison with their counterpart composites for different applications have also been included. Finally, the concluding remarks, prospects and possible scope are given in the last section.

6.
Sci Rep ; 11(1): 2866, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33536517

RESUMEN

In the present work, silver nanoparticles were prepared by using the extract of Camellia Sinensis. The extract contains phytochemicals which are mainly polyphenols acting as the natural reducing and stabilizing agents leading to the formation of uniformly dispersed and stabilized silver nanoparticles. The synthesis of silver nanoparticles was significantly influenced by the impact of the pH, as well as temperature conditions. It was found that at pH 5 and 25 °C, nanoparticles of different morphologies (spherical, polygonal, capsule) and sizes were formed. However, with the increase in temperature from 25 °C to 65 °C but at the same pH, these particles started attaining the spherical shape of different sizes owing to an increase in the reduction rate. Furthermore, for the reaction of the mixture at 65 °C, an increase in pH from 5 to 11 led to an increase in the monodispersity of spherically shaped nanoparticles, attributed to the hydroxide ions facilitated reduction. The prepared nanoparticles were investigated for their antibacterial activity using Nathan's Agar Well-Diffusion method. It was found that AgNPs prepared at pH 9 and 65 °C demonstrated strong antibacterial activity against gram-negative Escherichia coli in contrast to gram-positive Staphylococcus aureus. In reference to the cytotoxic potency, the prepared AgNPs showed clear cytotoxicity for HeLa cells and showcased a close relationship between activity and concentration as evidenced by the decrease in the percentage (100 to 30%) of metabolically active cells up to 25 µM-75 µM concentration of silver nanoparticles.


Asunto(s)
Antibacterianos/farmacología , Antineoplásicos/farmacología , Camellia sinensis/química , Nanopartículas del Metal/química , Extractos Vegetales/farmacología , Antibacterianos/síntesis química , Antineoplásicos/síntesis química , Ensayos de Selección de Medicamentos Antitumorales , Escherichia coli/efectos de los fármacos , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/química , Plata/química , Plata/farmacología , Staphylococcus aureus , Temperatura
7.
J Colloid Interface Sci ; 461: 203-210, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26397928

RESUMEN

SBA-15 modified with APTMS (3-aminopropyl trimethoxysilane) having pore diameter (∼8 nm) has been synthesized and impregnated with 1-10 wt.% Cu using Cu(NO3)2 as a metal source followed by calcination at 350 °C. As-prepared CuO/ap-SBA-15 powder showed changes in the color from white for bare SBA-15 to light green due to formation of anisotropic CuO nanoparticles that exhibited a characteristic plasmon absorption band at 359 and 747 nm. TEM studies showed a change in the morphology of CuO NPs as a function of increased Cu loading. Moreover, well dispersed CuO nanospheres (∼5-6 nm) and nanorods (aspect ratio ∼11-20 nm) having monoclinic crystal phase were observed within the mesoporous channels of SBA-15. Elemental mapping studies confirmed uniform distribution of CuO nanoparticles on the surface of SBA-15. An increase in surface area was also observed from 694 m(2) g(-1) for SBA-15 to 762 m(2) g(-1) for 10 wt.% Cu loading probably due to the deposition of excess of CuO nanoparticles on the outer siliceous surface. The catalytic activity also increased with Cu loading and 10 wt.% CuO/ap-SBA-15 catalyst displayed the highest catalytic activity for the reduction of m-chloronitrobenzene and m-nitrotoluene with 83% and 100% selectivity for m-chloroaniline and m-aminotoluene respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA