Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(22)2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36430528

RESUMEN

Lung cancer cells in the tumor microenvironment facilitate immune evasion that leads to failure of conventional chemotherapies, despite provisionally decided on the genetic diagnosis of patients in a clinical setup. The current study follows three lung cancer patients who underwent "personalized" chemotherapeutic intervention. Patient-derived xenografts (PDXs) were subjected to tumor microarray and treatment screening with chemotherapies, either individually or in combination with the peptide R11-NLS-pep8; this peptide targets both membrane-associated and nuclear PCNA. Ex vivo, employing PDX-derived explants, it was found that combination with R11-NLS-pep8 stimulated antineoplastic effect of chemotherapies that were, although predicted based on the patient's genetic mutation, inactive on their own. Furthermore, treatment in vivo of PDX-bearing mice showed an exactly similar trend in the result, corroborating the finding to be translated into clinical setup.


Asunto(s)
Antineoplásicos , Neoplasias Pulmonares , Humanos , Ratones , Animales , Sistemas de Liberación de Medicamentos , Péptidos/farmacología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Microambiente Tumoral , Modelos Animales de Enfermedad
2.
Anal Chem ; 89(1): 830-836, 2017 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-27991760

RESUMEN

Detection of reactive oxygen species (ROS) is important in varied biological processes, disease diagnostics, and chemotherapeutic drug screening. We constructed a ROS sensor comprising an ascorbic-acid-based hydrogel encapsulating luminescent amphiphilic carbon-dots (C-dots). The sensing mechanism is based upon ROS-induced oxidation of the ascorbic acid units within the hydrogel scaffold; as a consequence, the hydrogel framework collapses resulting in aggregation of the C-dots and quenching of their luminescence. The C-dot-hydrogel platform exhibits high sensitivity and detected ROS generated chemically in solution and in actual cell environments. We demonstrate application of the C-dot-hydrogel for evaluating the efficacy of a chemotherapeutic substance, underscoring the potential of the system for drug screening applications.


Asunto(s)
Ácido Ascórbico/química , Carbono/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Especies Reactivas de Oxígeno/análisis , Muerte Celular , Citometría de Flujo , Células HeLa , Humanos , Conformación Molecular , Especies Reactivas de Oxígeno/metabolismo , Espectrometría de Fluorescencia , Células Tumorales Cultivadas
3.
Toxicol Ind Health ; 31(7): 656-69, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23524878

RESUMEN

In liver, the major site of iron storage, iron overload is associated with oxidative damage of protein, lipid, and DNA and causes protein oxidation, lipid peroxidation, and rupture of hepatocytes, leading to cell death. Serum ferritin and liver iron content are the main forecasters of moderate to severe iron overload in the liver. The sequels of excess iron deposition in the liver are fibrosis and enhanced levels of serum enzymes and bilirubin markers. Emblica officinalis (EO) fruit extract was found efficient in lessening intraperitoneally injected iron dextran-induced liver toxicity in Swiss albino mice. Mice administered with different doses of 70% methanol extract of EO (50, 100, and 200 mg kg(-1) body weight) showed significant decrease in liver iron, serum ferritin, and serum enzyme levels, along with the decrease in lipid peroxidation, protein oxidation, and collagen content. The activity was further supported by its considerable iron chelation with half-maximal inhibitory concentration of 70.24 ± 2.74 µg ml(-1) and the protection on ferrous ion-mediated DNA breakdown with 50% protection ([P]50) of 1.04 ± 0.01 µg ml(-1). Simultaneously, the extract effectively induced the antioxidant enzyme levels and also exhibited the potential activity of reductive release of ferritin iron. These findings suggest that the EO extract may be used as a potent drug for the treatment of pathological sequences arisen in the iron overload-induced liver damage.


Asunto(s)
Antioxidantes/farmacología , Quelantes del Hierro/farmacología , Sobrecarga de Hierro/tratamiento farmacológico , Hígado/efectos de los fármacos , Phyllanthus emblica/metabolismo , Animales , Catalasa/análisis , Cromatografía Líquida de Alta Presión , Ferritinas/sangre , Glutatión Transferasa/análisis , Hierro/metabolismo , Hígado/patología , Masculino , Metanol , Ratones , Superóxido Dismutasa/análisis
4.
Biol Res ; 47: 24, 2014 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-25026869

RESUMEN

BACKGROUND: Unstable generation of free radicals in the body are responsible for many degenerative diseases. A bloom forming algae Euglena tuba growing abundantly in the aquatic habitats of Cachar district in the state of Assam in North-East India was analysed for its phytochemical contents, antioxidant activity as well as free radical scavenging potentials. RESULTS: Based on the ability of the extract in ABTS•+ radical cation inhibition and Fe3+ reducing power, the obtained results revealed the prominent antioxidant activity of the algae, with high correlation coefficient of its TEAC values to the respective phenolic and flavonoid contents. The extract had shown its scavenging activity for different free radicals and 41.89 ± 0.41 µg/ml, 5.83 ± 0.07 µg/ml, 278.46 ± 15.02 µg/ml and 223.25 ± 4.19 µg/ml were determined as the IC50 values for hydroxyl, superoxide, nitric oxide and hypochlorous acid respectively, which are lower than that of the corresponding reference standards. The phytochemical analysis also revealed that the phenolics, flavonoids, alkaloids, tannins and carbohydrates are present in adequate amount in the extract which was confirmed by HPLC analysis. CONCLUSIONS: The results showed that 70% methanol extract of the algae possesses excellent antioxidant and free radical scavenging properties.


Asunto(s)
Antioxidantes/metabolismo , Extractos Celulares/química , Euglena/química , Depuradores de Radicales Libres/metabolismo , Sustancias Reductoras/metabolismo , Alcaloides/análisis , Animales , Ácido Ascórbico/análisis , Cromanos/metabolismo , Cromatografía Líquida de Alta Presión , Flavonoides/análisis , Glucosa/análisis , India , Peroxidación de Lípido/efectos de los fármacos , Masculino , Metanol , Ratones , Microalgas , Oxidación-Reducción , Fenoles/análisis , Taninos/análisis
5.
Artículo en Inglés | MEDLINE | ID: mdl-38421044

RESUMEN

CONTEXT: Thyroid-stimulating hormone (or thyrotropin) receptor (TSHR) could be a selective target for small molecule ligands to treat thyroid cancer (TC). OBJECTIVE: We report a novel, orally efficacious ligand for TSHR that exhibits proliferation inhibitory activity against human TC in vitro and in vivo, and inhibition of metastasis in vivo. DESIGN: A35 (NCATS-SM4420; NCGC00241808) was selected from a sub-library of >200 TSHR ligands. Cell proliferation assays including BrdU incorporation and WST-1, along with molecular docking studies were done. In vivo activity of A35 was assessed in TC cell-derived xenograft (CDX) models with immunocompromised (NSG) mice. FFPE sections of tumor and lung tissues were observed for the extent of cell death and metastasis. RESULTS: A35 was shown to stimulate cAMP production in some cell types by activating TSHR but not in TC cells, MDA-T32 and MDA-T85. A35 inhibited proliferation of MDA-T32 & MDA-T85 in vitro and in vivo, and pulmonary metastasis of MDA-T85F1 in mice. In vitro, A35 inhibition of proliferation was reduced by a selective TSHR antagonist. Inhibition of CDX tumor growth without decreases in mouse weights and liver function showed A35 to be efficacious without apparent toxicity. Lastly, A35 reduced levels of Ki67 in the tumors and metastatic markers in lung tissues. CONCLUSION: We conclude that A35 is a TSHR-selective inhibitor of TC cell proliferation and metastasis, and suggest that A35 may be a promising lead drug candidate for the treatment of differentiated thyroid cancer in humans.

6.
Ann Hepatol ; 12(1): 123-9, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23293203

RESUMEN

The present study was designed to evaluate the ameliorating effect of 70% methanol extract of Spondias pinnata (SPME) on iron overload induced liver injury. Iron overload was induced by intraperitoneal administration of iron-dextran into mice and resulting liver damage was manifested by significant rise in serum enzyme markers (ALT, AST, ALP and bilirubin) and reduction in liver antioxidants (SOD, CAT, GST and GSH). Hepatic iron, serum ferritin, lipid peroxidation, protein carbonyl and hydroxyproline contents were measured in response to the oral administration of SPME of different doses (50, 100 and 200 mg/kg body weight). In order to determine the efficiency as iron chelating drug, the release of iron from ferritin by SPME was further studied. Enhanced levels of antioxidant enzymes were detected in SPME treated mice. SPME produced a dose dependent inhibition of lipid peroxidation, protein oxidation, liver fibrosis; and levels of serum enzyme markers and ferritin were also reduced dose dependently. The liver iron content was also found to be less in SPME treated group compared to control group. The reductive release of ferritin iron was augmented significantly after dose dependent addition of SPME. The ameliorating effect of SPME on damaged liver was furthermore supported by the histopathological studies that showed improved histological appearances. In conclusion, the present results demonstrate the hepatoprotective efficiency of SPME in iron intoxicated mice, and hence possibly useful as iron chelating drug for iron overload diseases.


Asunto(s)
Anacardiaceae/química , Antioxidantes/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Flavonoides/uso terapéutico , Hemosiderosis/tratamiento farmacológico , Fenoles/uso terapéutico , Extractos Vegetales/uso terapéutico , Animales , Catalasa/metabolismo , Ferritinas/sangre , Glutatión/metabolismo , Glutatión Transferasa/metabolismo , Hematínicos , Hemosiderosis/inducido químicamente , Hierro/metabolismo , Complejo Hierro-Dextran , Peroxidación de Lípido/efectos de los fármacos , Peróxidos Lipídicos/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Corteza de la Planta/química , Superóxido Dismutasa/metabolismo
7.
Indian J Exp Biol ; 51(2): 165-73, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23923610

RESUMEN

In view of the contribution of iron deposition in the oxidative pathologic process of liver disease, the potential of 70% methanolic extract of C. cajan leaf (CLME) towards antioxidative protection against iron-overload-induced liver damage in mice has been investigated. DPPH radical scavenging and protection of Fenton reaction induced DNA damage was conducted in vitro. Post oral administration of CLME to iron overloaded mice, the levels of antioxidant and serum enzymes, hepatic iron, serum ferritin, lipid peroxidation, and protein carbonyl and hydroxyproline contents were measured, in comparison to deferasirox treated mice. Oral treatment of the plant extract effectively lowered the elevated levels of liver iron, lipid peroxidation, protein carbonyl and hydroxyproline. There was notable increment in the dropped levels of hepatic antioxidants. The dosage of the plant extract not only made the levels of serum enzymes approach normal value, but also counteracted the overwhelmed serum ferritin level. The in vitro studies indicated potential antioxidant activity of CLME. The histopathological observations also substantiated the ameliorative function of the plant extract. Accordingly, it is suggested that Cajanus cajan leaf can be a useful herbal remedy to suppress oxidative damage caused by iron overload.


Asunto(s)
Antioxidantes/uso terapéutico , Cajanus/química , Sobrecarga de Hierro/complicaciones , Hepatopatías/tratamiento farmacológico , Hepatopatías/etiología , Extractos Vegetales/uso terapéutico , Sustancias Protectoras/uso terapéutico , Animales , Antioxidantes/farmacología , Biomarcadores/sangre , Compuestos de Bifenilo/metabolismo , Cromatografía Líquida de Alta Presión , Daño del ADN , Relación Dosis-Respuesta a Droga , Depuradores de Radicales Libres/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Hepatopatías/sangre , Hepatopatías/patología , Ratones , Estrés Oxidativo/efectos de los fármacos , Fitoterapia , Picratos/metabolismo , Extractos Vegetales/farmacología , Hojas de la Planta/química , Sustancias Protectoras/farmacología , Estándares de Referencia
8.
Artículo en Inglés | MEDLINE | ID: mdl-22919421

RESUMEN

The present study was carried out to evaluate the ameliorating effect of Caesalpinia crista Linn. (CCME) extract on iron-overload-induced liver injury. Iron overload was induced by intraperitoneal administration of iron dextran into mice. CCME attenuated the percentage increase in liver iron and serum ferritin levels when compared to control group. CCME also showed a dose-dependent inhibition of lipid peroxidation, protein oxidation, and liver fibrosis. The serum enzyme markers were found to be less, whereas enhanced levels of liver antioxidant enzymes were detected in CCME-treated group. In presence of CCME, the reductive release of ferritin iron was increased significantly. Furthermore, CCME exhibited DPPH radical scavenging and protection against Fe(2+)-mediated oxidative DNA damage. The current study confirmed the hepatoprotective effect of CCME against the model hepatotoxicant iron overload and the activity is likely related to its potent antioxidant and iron-chelating property.

9.
BMC Complement Altern Med ; 12: 144, 2012 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-22938047

RESUMEN

BACKGROUND: The 70% methanol extract of Terminalia chebula Retz. fruit (TCME) was investigated for its in vitro iron chelating property and in vivo ameliorating effect on hepatic injury of iron overloaded mice. METHODS: The effect of fruit extract on Fe2+-ferrozine complex formation and Fe2+ mediated pUC-18 DNA breakdown was studied in order to find the in vitro iron chelating activity. Thirty-six Swiss Albino mice were divided into six groups of: blank, patient control and treated with 50, 100, 200 mg/kg b.w. of TCME and desirox (standard iron chelator drug with Deferasirox as parent compound). Evaluations were made for serum markers of hepatic damage, antioxidant enzyme, lipid per oxidation and liver fibrosis levels. The reductive release of ferritin iron by the extract was further studied. RESULTS: In vitro results showed considerable iron chelation with IC50 of 27.19 ± 2.80 µg/ml, and a significant DNA protection with [P]50 of 1.07 ± 0.03 µg/ml along with about 86% retention of supercoiled DNA. Iron-dextran injection (i.p.) caused significant increase in the levels of the serum enzymes, viz., alanine aminotransferase (ALAT), aspartate aminotransferase (ASAT), alkaline phosphatase (ALP) and Bilirubin, which were subsequently lowered by oral administration of 200 mg/kg b.w. dose of the fruit extract by 81.5%, 105.88%, 188.08% and 128.31%, respectively. Similarly, treatment with the same dose of the extract was shown to alleviate the reduced levels of liver antioxidant enzyme superoxide dismutase, catalase, glutathione S-transferase and non-enzymatic reduced glutathione, by 49.8%, 53.5%, 35.4% and 11% respectively, in comparison to the iron overloaded mice. At the same time, the fruit extract effectively lowered the iron-overload induced raised levels of lipid per oxidation, protein carbonyl, hydroxyproline and liver iron by 49%, 67%, 67% and 26%, respectively, with oral treatment of 200 mg/kg b.w. dose of TCME. The fruit extract also showed potential activity for reductive release of ferritin iron. CONCLUSIONS: These findings suggest that Terminalia chebula extract may contain active substances capable of lessening iron overload induced toxicity, and hence possibly be useful as iron chelating drug for iron overload diseases.


Asunto(s)
Quelantes del Hierro/administración & dosificación , Hierro/toxicidad , Hepatopatías/tratamiento farmacológico , Extractos Vegetales/administración & dosificación , Terminalia/química , Animales , Frutas/química , Humanos , Quelantes del Hierro/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/lesiones , Hígado/metabolismo , Hepatopatías/etiología , Hepatopatías/genética , Hepatopatías/metabolismo , Masculino , Ratones , Oxidación-Reducción , Extractos Vegetales/metabolismo
10.
Artículo en Inglés | MEDLINE | ID: mdl-19596746

RESUMEN

"Oxidative stress" is initiated by reactive oxygen species (ROS), which are responsible for majority of the diseases. However, antioxidants with ROS scavenging ability may have great relevance in the prevention of oxidative stress. The present study was undertaken, using a 70% methanolic extract of Caesalpinia crista leaves, to examine different in vitro tests in diversified fields including total antioxidant activity, scavenging activities for various ROS, iron chelating activity and phenolic and flavonoid contents. Total antioxidant activity was evaluated as trolox equivalent antioxidant capacity value of 0.546 ± 0.014. The extract was investigated for different ROS scavenging activities and IC(50) values were found to be 0.44 ± 0.1 mg/ml, 24.9 ± 0.98 µg/ml, 33.72 ± 0.85 µg/ml, 61.13 ± 3.24 µg/mL and 170.51 ± 4.68 µg/mL for hydroxyl, superoxide, nitric oxide, singlet oxygen and hypochlorous acid, respectively; however, no significant results were obtained in scavenging of hydrogen peroxide and peroxynitrite anion. The extract was found to be a potent iron chelator with IC(50) = 279.85 ± 4.72 µg/mL. The plant extract (100 mg) yielded 50.23 ± 0.003 mg/mL gallic acid equivalent phenolic content and 106.83 ± 0.0003 mg/mL quercetin equivalent flavonoid content. In the in vivo experiments, the extract treatment showed significant increase in the level of superoxide dismutase, catalase, glutathione-S-transferase and reduced glutathione. In a word, it may be concluded that 70% methanol extract of C. crista leaves acts as an antioxidant and ROS scavenger; which may be due to the presence of phenolic and flavonoid compounds.

11.
Sci Rep ; 11(1): 7676, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33828163

RESUMEN

IL-2 is the master-regulator cytokine for T cell dependent responses and is crucial for proliferation and survival of T cells. However, IL-2-based treatments remained marginal, in part due to short half-life. Thus, we aimed to extend IL-2 half-life by flanking the IL-2 core with sequences derived from the extensively glycosylated hinge region of the NCR2 receptor. We termed this modified IL-2: "S2A". Importantly, S2A blood half-life was extended 14-fold compared to the clinical grade IL-2, Proleukin. Low doses inoculation of S2A significantly enhanced induction of Tregs (CD4+ Regulatory T cells) in vivo, as compared to Proleukin, while both S2A and Proleukin induced low levels of CD8+ T cells. In a B16 metastatic melanoma model, S2A treatment was unable to reduce the metastatic capacity of B16 melanoma, while enhancing induction and recruitment of Tregs, compared to Proleukin. Conversely, in two autoimmune models, rheumatoid arthritis and DSS-induced colitis, S2A treatment significantly reduced the progression of disease compared to Proleukin. Our results suggest new avenues for generating long-acting IL-2 for long-standing treatment and a new technique for manipulating short-life proteins for clinical and research uses.


Asunto(s)
Autoinmunidad/efectos de los fármacos , Interleucina-2/análogos & derivados , Receptor 2 Gatillante de la Citotoxidad Natural/química , Linfocitos T Reguladores/efectos de los fármacos , Animales , Artritis Reumatoide/prevención & control , Preparaciones de Acción Retardada , Evaluación Preclínica de Medicamentos , Glicosilación , Semivida , Interleucina-2/administración & dosificación , Interleucina-2/farmacocinética , Ratones Endogámicos C57BL , Ratones Noqueados
12.
BMC Complement Altern Med ; 10: 20, 2010 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-20462461

RESUMEN

BACKGROUND: Cellular damage caused by reactive oxygen species (ROS) has been implicated in several diseases, and hence natural antioxidants have significant importance in human health. The present study was carried out to evaluate the in vitro antioxidant and reactive oxygen species scavenging activities of Terminalia chebula, Terminalia belerica and Emblica officinalis fruit extracts. METHODS: The 70% methanol extracts were studied for in vitro total antioxidant activity along with phenolic and flavonoid contents and reducing power. Scavenging ability of the extracts for radicals like DPPH, hydroxyl, superoxide, nitric oxide, hydrogen peroxide, peroxynitrite, singlet oxygen, hypochlorous acid were also performed to determine the potential of the extracts. RESULTS: The ability of the extracts of the fruits in exhibiting their antioxative properties follow the order T. chebula >E. officinalis >T. belerica. The same order is followed in their flavonoid content, whereas in case of phenolic content it becomes E. officinalis >T. belerica >T. chebula. In the studies of free radicals' scavenging, where the activities of the plant extracts were inversely proportional to their IC50 values, T. chebula and E. officinalis were found to be taking leading role with the orders of T. chebula >E. officinalis >T. belerica for superoxide and nitric oxide, and E. officinalis >T. belerica >T. chebula for DPPH and peroxynitrite radicals. Miscellaneous results were observed in the scavenging of other radicals by the plant extracts, viz., T. chebula >T. belerica >E. officinalis for hydroxyl, T. belerica >T. chebula >E. officinalis for singlet oxygen and T. belerica >E. officinalis >T. chebula for hypochlorous acid. In a whole, the studied fruit extracts showed quite good efficacy in their antioxidant and radical scavenging abilities, compared to the standards. CONCLUSIONS: The evidences as can be concluded from the study of the 70% methanol extract of the fruits of Terminalia chebula, Terminalia belerica and Emblica officinalis, imposes the fact that they might be useful as potent sources of natural antioxidant.


Asunto(s)
Antioxidantes/farmacología , Flavonoides/farmacología , Depuradores de Radicales Libres/farmacología , Fenoles/farmacología , Phyllanthus emblica/química , Extractos Vegetales/farmacología , Terminalia/química , Antioxidantes/aislamiento & purificación , Flavonoides/análisis , Frutas , Concentración 50 Inhibidora , Fenoles/análisis , Especies Reactivas de Oxígeno
13.
J Food Biochem ; 44(12): e13521, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33043490

RESUMEN

The present study was aimed to investigate the anticancer and anti-inflammatory activities of Terminalia chebula fruit (TCME). The TCME was evaluated for in vitro anticancer activity on A549 and MCF-7 cells. TCME showed cytotoxicity toward A549 (IC50 - 359.06 ± 20.04 µg/ml), and MCF-7 (IC50 - 61.02 ± 5.55 µg/ml) cells. The flow-cytometer analysis revealed increase in sub G1 population and apoptotic population, which were observed through cell cycle analysis and annexin-V-FLUOS staining. Confocal microscopy showed DNA fragmentation in both the cell lines upon TCME treatment. Moreover, TCME treatment induces activation of apoptosis-related caspase-cascade pathways in both the cell lines. TCME treatment on RAW 264.7 cells revealed the anti-inflammatory properties by regulating nitrite and TNF-α production; iNOS, COX-2 levels, and translocation of NF-κB protein. Finally, HPLC analysis revealed the bioactive phytocompounds present in TCME. In conclusion, the combined results showed the potent anticancer and anti-inflammatory properties of T. chebula fruit. PRACTICAL APPLICATIONS: Lung cancer is a leading cause of death in men with 35.5% incidences and 30.8% mortality rate worldwide. On the contrary, breast cancer possesses 55.2% incidences and 16.6% mortality rate among the female worldwide. The present findings revealed the anti-lung and -breast cancer activity along with the potent anti-inflammatory potentials of Terminalia chebula fruit. These findings will helpful to isolate the active drug molecules from the Terminalia chebula fruit and mark them as an anticancer and anti-inflammatory agent.


Asunto(s)
Neoplasias de la Mama , Terminalia , Antiinflamatorios/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Caspasas , Femenino , Frutas , Humanos , Pulmón , Masculino , Extractos Vegetales/farmacología , Proteína X Asociada a bcl-2
14.
Cancer Immunol Res ; 7(7): 1120-1134, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31164357

RESUMEN

mAb-based blocking of the immune checkpoints involving the CTLA4-B7 and PD1-PDL1 inhibitory axes enhance T-cell-based adaptive immune responses in patients with cancer. We show here that antitumor responses by natural killer (NK) cells can be enhanced by a checkpoint-blocking mAb, 14-25-9, which we developed against proliferating cell nuclear antigen (PCNA). PCNA is expressed on the surface of cancer cells and acts as an inhibitory ligand for the NK-cell receptor, NKp44-isoform1. We tested for cytoplasmic- and membrane-associated PCNA by FACS- and ImageStream-based staining of cell lines and IHC of human cancer formalin fixed, paraffin embedded tissues. The mAb, 14-25-9, inhibited binding of chimeric NKp44 receptor to PCNA and mostly stained the cytoplasm and membrane of tumor cells, whereas commercial antibody (clone PC10) stained nuclear PCNA. NK functions were measured using ELISA-based IFNγ secretion assays and FACS-based killing assays. The NK92-NKp44-1 cell line and primary human NK cells showed increased IFNγ release upon coincubation with mAb 14-25-9 and various solid tumor cell lines and leukemias. Treatment with 14-25-9 also increased NK cytotoxic activity. In vivo efficacy was evaluated on patient-derived xenografts (PDX)-bearing NSG mice. In PDX-bearing mice, intravenous administration of mAb 14-25-9 increased degranulation (CD107a expression) of intratumorally injected patient autologous or allogeneic NK cells, as well as inhibited tumor growth when treated long term. Our study describes a mAb against the NKp44-PCNA innate immune checkpoint that can enhance NK-cell antitumor activity both in vitro and in vivo.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Citotoxicidad Inmunológica/inmunología , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Células Asesinas Naturales/efectos de los fármacos , Receptor 2 Gatillante de la Citotoxidad Natural/antagonistas & inhibidores , Antígeno Nuclear de Célula en Proliferación/química , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Animales , Apoptosis , Proliferación Celular , Citotoxicidad Inmunológica/efectos de los fármacos , Neoplasias de Cabeza y Cuello/inmunología , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/patología , Humanos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Receptor 2 Gatillante de la Citotoxidad Natural/inmunología , Antígeno Nuclear de Célula en Proliferación/inmunología , Carcinoma de Células Escamosas de Cabeza y Cuello/inmunología , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
16.
ACS Sens ; 2(8): 1215-1224, 2017 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-28770991

RESUMEN

Carbon dots (C-dots) prepared through heating of aminoguanidine and citric acid enable bimodal (colorimetric and fluorescence) detection of nitric oxide (NO) in aqueous solutions. The C-dots retained the functional units of aminoguanidine, which upon reaction with NO produced surface residues responsible for the color and fluorescence transformations. Notably, the aminoguanidine/citric acid C-dots were noncytotoxic, making possible real-time and high sensitivity detection of NO in cellular environments. Using multiprong spectroscopic and chromatography analyses we deciphered the molecular mechanism accounting for the NO-induced structural and photophysical transformations of the C-dots, demonstrating for the first time N2 release and azo dye formation upon the C-dots' surface.

17.
Front Immunol ; 8: 1212, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29085357

RESUMEN

Recent developments in cancer treatment are demonstrating the increasing and powerful potential of immunotherapeutic strategies. In this regard, the adoptive transfer of tumor-specific T-lymphocytes approaches can lead to tumor regression in cancer patients. More recently, the use of T-cells genetically engineered to express cancer-specific receptors such as the anti-CD19 chimeric antigen receptor (CAR) continues to show promise for the treatment of hematological malignancies. Still, there is a crucial need to develop efficient CAR-T cell approaches for the treatment of solid tumors. It has been shown that other lymphocytes such as natural killer (NK) cells can demonstrate potent antitumor function-nonetheless, their use in immunotherapy is rather limited due to difficulties in expanding these cells to therapeutically relevant numbers and to suppression by endogenous inhibitory mechanisms. Cancer recognition by NK cells is partly mediated by molecules termed natural cytotoxicity receptors (NCRs). In the present study, we hypothesize that it is possible to endow T-cells with an NK recognition pattern, providing them with a mean to recognize tumor cells, in a non-MHC restricted way. To test this, we genetically modified human T-cells with different chimeric receptors based on the human NCR2 molecule and then assessed their antitumor activity in vitro and in vivo. Our results show that expression in primary lymphocytes of an NCR2-derived CAR, termed s4428z, confers T-cells with the ability to specifically recognize heterogeneous tumors and to mediate tumor cytotoxicity in a mouse model. This study demonstrates the benefit of combining tumor recognition capability of NK cells with T cell effectiveness to improve cancer immunotherapy.

18.
Cytotechnology ; 66(2): 209-18, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23686547

RESUMEN

Spondias pinnata, a commonly distributed tree in India, previously proven for various pharmacological properties and also reported for efficient anti-oxidant, free radical scavenging and iron chelating activity, continuing this, the present study is aimed to investigate the role of 70 % methanolic extract of S. pinnata bark (SPME) in promoting apoptosis in human lung adenocarcinoma cell line (A549) and human breast adenocarcinoma cell line (MCF-7). These two malignant cell lines and a normal cell line were treated with increasing concentrations of SPME and cell viability is calculated. SPME showed significant cytotoxicity to both A549 and MCF-7 cells with an IC50 value of 147.84 ± 3.74 and 149.34 ± 13.30 µg/ml, respectively, whereas, comparatively no cytotoxicity was found in normal human lung fibroblast cell line (WI-38): IC50 932.38 ± 84.44 µg/ml. Flow cytometric analysis and confocal microscopic studies confirmed that SPME is able to induce apoptosis in both malignant cell lines. Furthermore, immunoblot result proposed the pathway of apoptosis induction by increasing Bax/Bcl-2 ratio in both cell types, which results in the activation of the caspase-cascade and ultimately leads to the cleavage of Poly adeno ribose polymerase. For the first time this study proved the anticancer potential of SPME against human lung and breast cancer by inducing apoptosis through the modulation of Bcl-2 family proteins. This might take S. pinnata in light to investigate it for further development as therapeutic anticancer source.

19.
Pharmacogn Mag ; 10(37): 27-33, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24695415

RESUMEN

BACKGROUND: The heartwood extract of A. catechu, called pale catechu or "Katha" in Hindi has been widely used in traditional Indian medicinal system. Although various pharmacological properties of this plant had been reported previously, only a few were concerned with the anticancer activity of this plant. OBJECTIVE: The objective was to assess the in vitro anticancer and apoptosis inducing effect of 70% methanolic extract of "Katha" (ACME) on human breast adenocarcinoma cell line (MCF-7). MATERIALS AND METHODS: MCF-7 cell line was treated with increasing concentrations of ACME and cell viability was calculated. Flow cytometric methods were used to confirm the apoptosis promoting role of ACME. Morphological changes were then analysed using confocal microscopy. Western blotting was then performed to investigate the expression of apoptogenic proteins and to analyse the activation of caspases. RESULTS: ACME showed significant cytotoxicity to MCF-7 cells with an IC50 value of 288.85 ± 25.79 µg/ml. Flow cytometric analysis and morphological studies confirmed that ACME is able to induce apoptosis in MCF-7 cells. Furthermore, immunoblot results suggested the pathway of apoptosis induction by increasing Bax/Bcl-2 ratio which results in the activation of caspase-cascade and ultimately leads to the cleavage of Poly adeno ribose polymerase (PARP). CONCLUSION: These results provide the evidence that ACME is able to inhibit the proliferation of MCF-7 cells by inducing apoptosis through intrinsic pathway.

20.
In Vitro Cell Dev Biol Anim ; 50(6): 527-37, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24399255

RESUMEN

The objective of the present study was to assess the in vitro anticancer activity of 70% methanolic extract of Terminalia belerica (TBME) against human lung (A549) and human breast (MCF-7) carcinoma and its possible mechanism. TBME showed significant cytotoxicity to both A549 and MCF-7 cells, whereas, no cytotoxicity was found in non-malignant WI-38 cells. Flow cytometric analysis was then performed and 100 µg/ml of TBME was selected as the effective concentration inducing apoptosis in A549 and MCF-7. At this concentration, TBME caused DNA fragmentation pattern of apoptosis. Furthermore, mechanism of apoptosis induction was demonstrated using western blotting and Bax/Bcl-2 ratio in both types of the cells was found increased, which leads to the activation of caspase cascade along with the cleavage of PARP. These results suggested that TBME is able to induce anticancer effects on both lung and breast cancer cell lines through the modulation of Bcl-2 family proteins.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Extractos Vegetales/farmacología , Terminalia/metabolismo , Adenocarcinoma del Pulmón , Caspasa 3/biosíntesis , Caspasa 3/metabolismo , Caspasa 8/biosíntesis , Caspasa 8/metabolismo , Caspasa 9/biosíntesis , Caspasa 9/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Fragmentación del ADN/efectos de los fármacos , Femenino , Humanos , Células MCF-7 , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/biosíntesis , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteína X Asociada a bcl-2/biosíntesis , Proteína X Asociada a bcl-2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA