Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Genes Dev ; 38(1-2): 70-94, 2024 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-38316520

RESUMEN

Since genome instability can drive cancer initiation and progression, cells have evolved highly effective and ubiquitous DNA damage response (DDR) programs. However, some cells (for example, in skin) are normally exposed to high levels of DNA-damaging agents. Whether such high-risk cells possess lineage-specific mechanisms that tailor DNA repair to the tissue remains largely unknown. Using melanoma as a model, we show here that the microphthalmia-associated transcription factor MITF, a lineage addition oncogene that coordinates many aspects of melanocyte and melanoma biology, plays a nontranscriptional role in shaping the DDR. On exposure to DNA-damaging agents, MITF is phosphorylated at S325, and its interactome is dramatically remodeled; most transcription cofactors dissociate, and instead MITF interacts with the MRE11-RAD50-NBS1 (MRN) complex. Consequently, cells with high MITF levels accumulate stalled replication forks and display defects in homologous recombination-mediated repair associated with impaired MRN recruitment to DNA damage. In agreement with this, high MITF levels are associated with increased single-nucleotide and copy number variant burdens in melanoma. Significantly, the SUMOylation-defective MITF-E318K melanoma predisposition mutation recapitulates the effects of DNA-PKcs-phosphorylated MITF. Our data suggest that a nontranscriptional function of a lineage-restricted transcription factor contributes to a tissue-specialized modulation of the DDR that can impact cancer initiation.


Asunto(s)
Melanoma , Humanos , Melanoma/genética , Factor de Transcripción Asociado a Microftalmía/genética , Daño del ADN , Inestabilidad Genómica/genética , ADN
2.
Genes Dev ; 33(5-6): 310-332, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30804224

RESUMEN

Whether cell types exposed to a high level of environmental insults possess cell type-specific prosurvival mechanisms or enhanced DNA damage repair capacity is not well understood. BRN2 is a tissue-restricted POU domain transcription factor implicated in neural development and several cancers. In melanoma, BRN2 plays a key role in promoting invasion and regulating proliferation. Here we found, surprisingly, that rather than interacting with transcription cofactors, BRN2 is instead associated with DNA damage response proteins and directly binds PARP1 and Ku70/Ku80. Rapid PARP1-dependent BRN2 association with sites of DNA damage facilitates recruitment of Ku80 and reprograms DNA damage repair by promoting Ku-dependent nonhomologous end-joining (NHEJ) at the expense of homologous recombination. BRN2 also suppresses an apoptosis-associated gene expression program to protect against UVB-, chemotherapy- and vemurafenib-induced apoptosis. Remarkably, BRN2 expression also correlates with a high single-nucleotide variation prevalence in human melanomas. By promoting error-prone DNA damage repair via NHEJ and suppressing apoptosis of damaged cells, our results suggest that BRN2 contributes to the generation of melanomas with a high mutation burden. Our findings highlight a novel role for a key transcription factor in reprogramming DNA damage repair and suggest that BRN2 may impact the response to DNA-damaging agents in BRN2-expressing cancers.


Asunto(s)
Apoptosis , Reparación del ADN por Unión de Extremidades/genética , Proteínas de Homeodominio/metabolismo , Melanoma/genética , Melanoma/fisiopatología , Mutación/genética , Factores del Dominio POU/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/genética , Proteínas de Homeodominio/genética , Humanos , Autoantígeno Ku/metabolismo , Factores del Dominio POU/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Unión Proteica , Dominios Proteicos , Transporte de Proteínas
3.
Haematologica ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38813748

RESUMEN

T-cell acute lymphoblastic leukemia (T-ALL) is a cancer of the immune system. Approximately 20% of paediatric and 50% of adult T-ALL patients have refractory disease or relapse and die from the disease. To improve patient outcome new therapeutics are needed. With the aim to identify new therapeutic targets, we combined the analysis of T-ALL gene expression and metabolism to identify the metabolic adaptations that T-ALL cells exhibit. We found that glutamine uptake is essential for T-ALL proliferation. Isotope tracing experiments showed that glutamine fuels aspartate synthesis through the TCA cycle and that glutamine and glutamine-derived aspartate together supply three nitrogen atoms in purines and all but one atom in pyrimidine rings. We show that the glutamate-aspartate transporter EAAT1 (SLC1A3), which is normally expressed in the central nervous system, is crucial for glutamine conversion to aspartate and nucleotides and that T-ALL cell proliferation depends on EAAT1 function. Through this work, we identify EAAT1 as a novel therapeutic target for T-ALL treatment.

4.
Nucleic Acids Res ; 48(3): 1271-1284, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31828313

RESUMEN

The healing of broken chromosomes by de novo telomere addition, while a normal developmental process in some organisms, has the potential to cause extensive loss of heterozygosity, genetic disease, or cell death. However, it is unclear how de novo telomere addition (dnTA) is regulated at DNA double-strand breaks (DSBs). Here, using a non-essential minichromosome in fission yeast, we identify roles for the HR factors Rqh1 helicase, in concert with Rad55, in suppressing dnTA at or near a DSB. We find the frequency of dnTA in rqh1Δ rad55Δ cells is reduced following loss of Exo1, Swi5 or Rad51. Strikingly, in the absence of the distal homologous chromosome arm dnTA is further increased, with nearly half of the breaks being healed in rqh1Δ rad55Δ or rqh1Δ exo1Δ cells. These findings provide new insights into the genetic context of highly efficient dnTA within HR intermediates, and how such events are normally suppressed to maintain genome stability.


Asunto(s)
ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Reparación del ADN por Recombinación/genética , Proteínas de Schizosaccharomyces pombe/genética , Telómero/genética , Cromosomas Fúngicos/genética , Roturas del ADN de Doble Cadena , Exodesoxirribonucleasas/genética , Regulación Fúngica de la Expresión Génica/genética , Genoma Fúngico/genética , Inestabilidad Genómica/genética , Pérdida de Heterocigocidad/genética , Recombinasa Rad51/genética , Schizosaccharomyces/genética
5.
Mol Cell ; 43(1): 19-32, 2011 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-21726807

RESUMEN

Autophagy, a major degradation process for long-lived and aggregate-prone proteins, affects various human processes, such as development, immunity, cancer, and neurodegeneration. Several autophagy regulators have been identified in recent years. Here we show that nitric oxide (NO), a potent cellular messenger, inhibits autophagosome synthesis via a number of mechanisms. NO impairs autophagy by inhibiting the activity of S-nitrosylation substrates, JNK1 and IKKß. Inhibition of JNK1 by NO reduces Bcl-2 phosphorylation and increases the Bcl-2-Beclin 1 interaction, thereby disrupting hVps34/Beclin 1 complex formation. Additionally, NO inhibits IKKß and reduces AMPK phosphorylation, leading to mTORC1 activation via TSC2. Overexpression of nNOS, iNOS, or eNOS impairs autophagosome formation primarily via the JNK1-Bcl-2 pathway. Conversely, NOS inhibition enhances the clearance of autophagic substrates and reduces neurodegeneration in models of Huntington's disease. Our data suggest that nitrosative stress-mediated protein aggregation in neurodegenerative diseases may be, in part, due to autophagy inhibition.


Asunto(s)
Autofagia , Óxido Nítrico/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Beclina-1 , Línea Celular , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Inhibidores Enzimáticos/farmacología , Células HEK293 , Células HeLa , Humanos , Proteína Huntingtina , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Quinasa I-kappa B/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteínas de la Membrana/metabolismo , Ratones , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Complejos Multiproteicos , NG-Nitroarginina Metil Éster/farmacología , Proteínas del Tejido Nervioso/metabolismo , Óxido Nítrico/biosíntesis , Óxido Nítrico Sintasa/antagonistas & inhibidores , Óxido Nítrico Sintasa/metabolismo , Proteínas Nucleares/metabolismo , Fosforilación , Isoformas de Proteínas/metabolismo , Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas , Serina-Treonina Quinasas TOR , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/metabolismo
6.
Nucleic Acids Res ; 44(12): 5743-57, 2016 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-27131361

RESUMEN

DNA double-strand breaks (DSBs) are toxic lesions, which if improperly repaired can result in cell death or genomic instability. DSB repair is usually facilitated by the classical non-homologous end joining (C-NHEJ), or homologous recombination (HR) pathways. However, a mutagenic alternative NHEJ pathway, microhomology-mediated end joining (MMEJ), can also be deployed. While MMEJ is suppressed by C-NHEJ, the relationship between HR and MMEJ is less clear. Here, we describe a role for HR genes in suppressing MMEJ in human cells. By monitoring DSB mis-repair using a sensitive HPRT assay, we found that depletion of HR proteins, including BRCA2, BRCA1 or RPA, resulted in a distinct mutational signature associated with significant increases in break-induced mutation frequencies, deletion lengths and the annealing of short regions of microhomology (2-6 bp) across the break-site. This signature was dependent on CtIP, MRE11, POLQ and PARP, and thus indicative of MMEJ. In contrast to CtIP or MRE11, depletion of BRCA1 resulted in increased partial resection and MMEJ, thus revealing a functional distinction between these early acting HR factors. Together these findings indicate that HR factors suppress mutagenic MMEJ following DSB resection.


Asunto(s)
Proteína BRCA1/genética , Proteína BRCA2/genética , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , ADN/metabolismo , Reparación del ADN por Recombinación , Proteína de Replicación A/genética , Proteína BRCA1/antagonistas & inhibidores , Proteína BRCA1/metabolismo , Proteína BRCA2/antagonistas & inhibidores , Proteína BRCA2/metabolismo , Secuencia de Bases , Bioensayo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Endodesoxirribonucleasas , Células Epiteliales/citología , Células Epiteliales/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Proteína Homóloga de MRE11 , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Osteoblastos/citología , Osteoblastos/metabolismo , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteína de Replicación A/antagonistas & inhibidores , Proteína de Replicación A/metabolismo , Alineación de Secuencia , Homología de Secuencia de Ácido Nucleico , ADN Polimerasa theta
7.
Nucleic Acids Res ; 44(4): 1703-17, 2016 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-26682798

RESUMEN

The formation of RNA-DNA hybrids, referred to as R-loops, can promote genome instability and cancer development. Yet the mechanisms by which R-loops compromise genome instability are poorly understood. Here, we establish roles for the evolutionarily conserved Nrl1 protein in pre-mRNA splicing regulation, R-loop suppression and in maintaining genome stability. nrl1Δ mutants exhibit endogenous DNA damage, are sensitive to exogenous DNA damage, and have defects in homologous recombination (HR) repair. Concomitantly, nrl1Δ cells display significant changes in gene expression, similar to those induced by DNA damage in wild-type cells. Further, we find that nrl1Δ cells accumulate high levels of R-loops, which co-localize with HR repair factors and require Rad51 and Rad52 for their formation. Together, our findings support a model in which R-loop accumulation and subsequent DNA damage sequesters HR factors, thereby compromising HR repair at endogenously or exogenously induced DNA damage sites, leading to genome instability.


Asunto(s)
Empalme Alternativo/genética , Inestabilidad Genómica/genética , Recombinación Homóloga/genética , Precursores del ARN/genética , Proteínas de Schizosaccharomyces pombe/genética , ADN/química , ADN/genética , Reparación del ADN/genética , ARN/química , ARN/genética , Recombinasa Rad51/genética , Proteína Recombinante y Reparadora de ADN Rad52/genética , Schizosaccharomyces/genética , Empalmosomas/genética , Empalmosomas/metabolismo
8.
Proc Natl Acad Sci U S A ; 112(31): E4281-7, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26195741

RESUMEN

Studies of human genetics and pathophysiology have implicated the regulation of autophagy in inflammation, neurodegeneration, infection, and autoimmunity. These findings have motivated the use of small-molecule probes to study how modulation of autophagy affects disease-associated phenotypes. Here, we describe the discovery of the small-molecule probe BRD5631 that is derived from diversity-oriented synthesis and enhances autophagy through an mTOR-independent pathway. We demonstrate that BRD5631 affects several cellular disease phenotypes previously linked to autophagy, including protein aggregation, cell survival, bacterial replication, and inflammatory cytokine production. BRD5631 can serve as a valuable tool for studying the role of autophagy in the context of cellular homeostasis and disease.


Asunto(s)
Autofagia/efectos de los fármacos , Genética Médica , Enfermedad de Niemann-Pick Tipo C/genética , Enfermedad de Niemann-Pick Tipo C/patología , Bibliotecas de Moléculas Pequeñas/farmacología , Bacterias/efectos de los fármacos , Proteínas Portadoras/metabolismo , Agregación Celular/efectos de los fármacos , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Ensayos Analíticos de Alto Rendimiento , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Interleucina-1beta/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Glicoproteínas de Membrana/metabolismo , Modelos Biológicos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Proteína Niemann-Pick C1 , Enfermedad de Niemann-Pick Tipo C/metabolismo , Péptidos/metabolismo , Fenotipo , Bibliotecas de Moléculas Pequeñas/química
9.
Biochim Biophys Acta ; 1861(4): 269-84, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26778751

RESUMEN

Autophagy is a catabolic process with an essential function in the maintenance of cellular and tissue homeostasis. It is primarily recognised for its role in the degradation of dysfunctional proteins and unwanted organelles, however in recent years the range of autophagy substrates has also been extended to lipids. Degradation of lipids via autophagy is termed lipophagy. The ability of autophagy to contribute to the maintenance of lipo-homeostasis becomes particularly relevant in the context of genetic lysosomal storage disorders where perturbations of autophagic flux have been suggested to contribute to the disease aetiology. Here we review recent discoveries of the molecular mechanisms mediating lipid turnover by the autophagy pathways. We further focus on the relevance of autophagy, and specifically lipophagy, to the disease mechanisms. Moreover, autophagy is also discussed as a potential therapeutic target in several key lysosomal storage disorders.


Asunto(s)
Autofagia , Errores Innatos del Metabolismo Lipídico/metabolismo , Metabolismo de los Lípidos , Enfermedades por Almacenamiento Lisosomal/metabolismo , Lisosomas/metabolismo , Animales , Autofagia/genética , Hígado Graso/genética , Hígado Graso/metabolismo , Hígado Graso/patología , Humanos , Metabolismo de los Lípidos/genética , Errores Innatos del Metabolismo Lipídico/genética , Errores Innatos del Metabolismo Lipídico/patología , Enfermedades por Almacenamiento Lisosomal/genética , Enfermedades por Almacenamiento Lisosomal/patología , Lisosomas/patología , Diana Mecanicista del Complejo 1 de la Rapamicina , Complejos Multiproteicos/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
10.
Physiol Rev ; 90(4): 1383-435, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20959619

RESUMEN

(Macro)autophagy is a bulk degradation process that mediates the clearance of long-lived proteins and organelles. Autophagy is initiated by double-membraned structures, which engulf portions of cytoplasm. The resulting autophagosomes ultimately fuse with lysosomes, where their contents are degraded. Although the term autophagy was first used in 1963, the field has witnessed dramatic growth in the last 5 years, partly as a consequence of the discovery of key components of its cellular machinery. In this review we focus on mammalian autophagy, and we give an overview of the understanding of its machinery and the signaling cascades that regulate it. As recent studies have also shown that autophagy is critical in a range of normal human physiological processes, and defective autophagy is associated with diverse diseases, including neurodegeneration, lysosomal storage diseases, cancers, and Crohn's disease, we discuss the roles of autophagy in health and disease, while trying to critically evaluate if the coincidence between autophagy and these conditions is causal or an epiphenomenon. Finally, we consider the possibility of autophagy upregulation as a therapeutic approach for various conditions.


Asunto(s)
Autofagia/fisiología , Células Eucariotas/metabolismo , Mamíferos/fisiología , Animales , Células Eucariotas/patología , Humanos , Fagosomas/metabolismo , Transducción de Señal , Estrés Fisiológico
11.
Nucleic Acids Res ; 42(9): 5644-56, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24623809

RESUMEN

DNA double-strand breaks (DSBs) can cause chromosomal rearrangements and extensive loss of heterozygosity (LOH), hallmarks of cancer cells. Yet, how such events are normally suppressed is unclear. Here we identify roles for the DNA damage checkpoint pathway in facilitating homologous recombination (HR) repair and suppressing extensive LOH and chromosomal rearrangements in response to a DSB. Accordingly, deletion of Rad3(ATR), Rad26ATRIP, Crb2(53BP1) or Cdc25 overexpression leads to reduced HR and increased break-induced chromosome loss and rearrangements. We find the DNA damage checkpoint pathway facilitates HR, in part, by promoting break-induced Cdt2-dependent nucleotide synthesis. We also identify additional roles for Rad17, the 9-1-1 complex and Chk1 activation in facilitating break-induced extensive resection and chromosome loss, thereby suppressing extensive LOH. Loss of Rad17 or the 9-1-1 complex results in a striking increase in break-induced isochromosome formation and very low levels of chromosome loss, suggesting the 9-1-1 complex acts as a nuclease processivity factor to facilitate extensive resection. Further, our data suggest redundant roles for Rad3ATR and Exo1 in facilitating extensive resection. We propose that the DNA damage checkpoint pathway coordinates resection and nucleotide synthesis, thereby promoting efficient HR repair and genome stability.


Asunto(s)
Roturas del ADN de Doble Cadena , División del ADN , Inestabilidad Genómica , Reparación del ADN por Recombinación , Schizosaccharomyces/genética , Puntos de Control del Ciclo Celular , Quinasa de Punto de Control 2/metabolismo , Cromosomas Fúngicos/genética , Hibridación Genómica Comparativa , Exodesoxirribonucleasas/metabolismo , Genoma Fúngico , Pérdida de Heterocigocidad , Nucleótidos/biosíntesis , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
12.
J Neurosci ; 34(8): 2967-78, 2014 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-24553937

RESUMEN

N-acetylserotonin (NAS) is an immediate precursor of melatonin, which we have reported is neuroprotective against ischemic injury. Here we test whether NAS is a potential neuroprotective agent in experimental models of ischemic injury. We demonstrate that NAS inhibits cell death induced by oxygen-glucose deprivation or H2O2 in primary cerebrocortical neurons and primary hippocampal neurons in vitro, and organotypic hippocampal slice cultures ex vivo and reduces hypoxia/ischemia injury in the middle cerebral artery occlusion mouse model of cerebral ischemia in vivo. We find that NAS is neuroprotective by inhibiting the mitochondrial cell death pathway and the autophagic cell death pathway. The neuroprotective effects of NAS may result from the influence of mitochondrial permeability transition pore opening, mitochondrial fragmentation, and inhibition of the subsequent release of apoptogenic factors cytochrome c, Smac, and apoptosis-inducing factor from mitochondria to cytoplasm, and activation of caspase-3, -9, as well as the suppression of the activation of autophagy under stress conditions by increasing LC3-II and Beclin-1 levels and decreasing p62 level. However, NAS, unlike melatonin, does not provide neuroprotection through the activation of melatonin receptor 1A. We demonstrate that NAS reaches the brain subsequent to intraperitoneal injection using liquid chromatography/mass spectrometry analysis. Given that it occurs naturally and has low toxicity, NAS, like melatonin, has potential as a novel therapy for ischemic injury.


Asunto(s)
Autofagia/efectos de los fármacos , Isquemia Encefálica/patología , Muerte Celular/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Fármacos Neuroprotectores , Serotonina/análogos & derivados , Animales , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/fisiología , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/patología , Hipocampo/citología , Hipocampo/patología , Peróxido de Hidrógeno/toxicidad , Inmunohistoquímica , Infarto de la Arteria Cerebral Media/patología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Permeabilidad , Serotonina/metabolismo , Serotonina/farmacología , Transducción de Señal/efectos de los fármacos , Fracciones Subcelulares/efectos de los fármacos
13.
Amino Acids ; 47(10): 2065-88, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24965527

RESUMEN

Maintenance of amino acid homeostasis is important for healthy cellular function, metabolism and growth. Intracellular amino acid concentrations are dynamic; the high demand for protein synthesis must be met with constant dietary intake, followed by cellular influx, utilization and recycling of nutrients. Autophagy is a catabolic process via which superfluous or damaged proteins and organelles are delivered to the lysosome and degraded to release free amino acids into the cytoplasm. Furthermore, autophagy is specifically activated in response to amino acid starvation via two key signaling cascades: the mammalian target of rapamycin (mTOR) complex 1 (mTORC1) and the general control nonderepressible 2 (GCN2) pathways. These pathways are key regulators of the integration between anabolic (amino acid depleting) and catabolic (such as autophagy which is amino acid replenishing) processes to ensure intracellular amino acid homeostasis. Here, we discuss the key roles that amino acids, along with energy (ATP, glucose) and oxygen, are playing in cellular growth and proliferation. We further explore how sophisticated methods are employed by cells to sense intracellular amino acid concentrations, how amino acids can act as a switch to dictate the temporal and spatial activation of anabolic and catabolic processes and how autophagy contributes to the replenishment of free amino acids, all to ensure cell survival. Relevance of these molecular processes to cellular and organismal physiology and pathology is also discussed.


Asunto(s)
Aminoácidos/metabolismo , Autofagia , Fenómenos Fisiológicos Celulares , Homeostasis , Transducción de Señal , Animales , Humanos
14.
PLoS Genet ; 8(8): e1002884, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22912599

RESUMEN

Fanconi anemia (FA) is a devastating genetic disease, associated with genomic instability and defects in DNA interstrand cross-link (ICL) repair. The FA repair pathway is not thought to be conserved in budding yeast, and although the yeast Mph1 helicase is a putative homolog of human FANCM, yeast cells disrupted for MPH1 are not sensitive to ICLs. Here, we reveal a key role for Mph1 in ICL repair when the Pso2 exonuclease is inactivated. We find that the yeast FANCM ortholog Mph1 physically and functionally interacts with Mgm101, a protein previously implicated in mitochondrial DNA repair, and the MutSα mismatch repair factor (Msh2-Msh6). Co-disruption of MPH1, MGM101, MSH6, or MSH2 with PSO2 produces a lesion-specific increase in ICL sensitivity, the elevation of ICL-induced chromosomal rearrangements, and persistence of ICL-associated DNA double-strand breaks. We find that Mph1-Mgm101-MutSα directs the ICL-induced recruitment of Exo1 to chromatin, and we propose that Exo1 is an alternative 5'-3' exonuclease utilised for ICL repair in the absence of Pso2. Moreover, ICL-induced Rad51 chromatin loading is delayed when both Pso2 and components of the Mph1-Mgm101-MutSα and Exo1 pathway are inactivated, demonstrating that the homologous recombination stages of ICL repair are inhibited. Finally, the FANCJ- and FANCP-related factors Chl1 and Slx4, respectively, are also components of the genetic pathway controlled by Mph1-Mgm101-MutSα. Together this suggests that a prototypical FA-related ICL repair pathway operates in budding yeast, which acts redundantly with the pathway controlled by Pso2, and is required for the targeting of Exo1 to chromatin to execute ICL repair.


Asunto(s)
ARN Helicasas DEAD-box/genética , Reparación del ADN , Endodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , ARN Helicasas DEAD-box/deficiencia , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/deficiencia , Endodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/genética , Anemia de Fanconi/genética , Humanos , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Modelos Biológicos , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal/genética
15.
Cell Death Dis ; 15(5): 382, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38821960

RESUMEN

Impairment of autophagy leads to an accumulation of misfolded proteins and damaged organelles and has been implicated in plethora of human diseases. Loss of autophagy in actively respiring cells has also been shown to trigger metabolic collapse mediated by the depletion of nicotinamide adenine dinucleotide (NAD) pools, resulting in cell death. Here we found that the deficit in the autophagy-NAD axis underpins the loss of viability in cell models of a neurodegenerative lysosomal storage disorder, Niemann-Pick type C1 (NPC1) disease. Defective autophagic flux in NPC1 cells resulted in mitochondrial dysfunction due to impairment of mitophagy, leading to the depletion of both the reduced and oxidised forms of NAD as identified via metabolic profiling. Consequently, exhaustion of the NAD pools triggered mitochondrial depolarisation and apoptotic cell death. Our chemical screening identified two FDA-approved drugs, celecoxib and memantine, as autophagy activators which effectively restored autophagic flux, NAD levels, and cell viability of NPC1 cells. Of biomedical relevance, either pharmacological rescue of the autophagy deficiency or NAD precursor supplementation restored NAD levels and improved the viability of NPC1 patient fibroblasts and induced pluripotent stem cell (iPSC)-derived cortical neurons. Together, our findings identify the autophagy-NAD axis as a mechanism of cell death and a target for therapeutic interventions in NPC1 disease, with a potential relevance to other neurodegenerative disorders.


Asunto(s)
Autofagia , Células Madre Pluripotentes Inducidas , NAD , Enfermedad de Niemann-Pick Tipo C , Enfermedad de Niemann-Pick Tipo C/metabolismo , Enfermedad de Niemann-Pick Tipo C/patología , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico , Enfermedad de Niemann-Pick Tipo C/genética , Humanos , Autofagia/efectos de los fármacos , NAD/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Memantina/farmacología , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/patología , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Mitofagia/efectos de los fármacos , Apoptosis/efectos de los fármacos
16.
Biochem Soc Trans ; 41(5): 1103-30, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24059496

RESUMEN

Autophagy is an intracellular degradation pathway essential for cellular and energy homoeostasis. It functions in the clearance of misfolded proteins and damaged organelles, as well as recycling of cytosolic components during starvation to compensate for nutrient deprivation. This process is regulated by mTOR (mammalian target of rapamycin)-dependent and mTOR-independent pathways that are amenable to chemical perturbations. Several small molecules modulating autophagy have been identified that have potential therapeutic application in diverse human diseases, including neurodegeneration. Neurodegeneration-associated aggregation-prone proteins are predominantly degraded by autophagy and therefore stimulating this process with chemical inducers is beneficial in a wide range of transgenic disease models. Emerging evidence indicates that compromised autophagy contributes to the aetiology of various neurodegenerative diseases related to protein conformational disorders by causing the accumulation of mutant proteins and cellular toxicity. Combining the knowledge of autophagy dysfunction and the mechanism of drug action may thus be rational for designing targeted therapy. The present review describes the cellular signalling pathways regulating mammalian autophagy and highlights the potential therapeutic application of autophagy inducers in neurodegenerative disorders.


Asunto(s)
Autofagia/genética , Enfermedades Neurodegenerativas/genética , Serina-Treonina Quinasas TOR/genética , Supervivencia Celular/genética , Humanos , Terapia Molecular Dirigida , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/patología , Transducción de Señal , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Serina-Treonina Quinasas TOR/metabolismo
17.
Drug Discov Today Technol ; 10(1): e137-44, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24050242

RESUMEN

Autophagy is a cellular degradation process involved in the clearance of aggregate-prone proteins associated with neurodegenerative diseases. While the mTOR pathway has been known to be the major regulator of autophagy, recent advancements into the regulation of autophagy have identified mTOR-independent autophagy pathways that are amenable to chemical perturbations. Several chemical and genetic screens have been undertaken to identify small molecule and genetic regulators of autophagy, respectively. The small molecule autophagy enhancers offer great potential as therapeutic candidates not only for neurodegenerative diseases, but also for diverse human diseases where autophagy acts as a protective pathway. This review highlights the various chemical screening platforms for autophagy drug discovery pertinent for the treatment of neurodegenerative diseases.


Asunto(s)
Autofagia , Enfermedades Neurodegenerativas/tratamiento farmacológico , Animales , Descubrimiento de Drogas , Humanos
18.
PLoS Genet ; 6(2): e1000838, 2010 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-20140187

RESUMEN

Expansion of a stretch of polyglutamine in huntingtin (htt), the protein product of the IT15 gene, causes Huntington's disease (HD). Previous investigations into the role of the polyglutamine stretch (polyQ) in htt function have suggested that its length may modulate a normal htt function involved in regulating energy homeostasis. Here we show that expression of full-length htt lacking its polyglutamine stretch (DeltaQ-htt) in a knockin mouse model for HD (Hdh(140Q/DeltaQ)), reduces significantly neuropil mutant htt aggregates, ameliorates motor/behavioral deficits, and extends lifespan in comparison to the HD model mice (Hdh(140Q/+)). The rescue of HD model phenotypes is accompanied by the normalization of lipofuscin levels in the brain and an increase in the steady-state levels of the mammalian autophagy marker microtubule-associate protein 1 light chain 3-II (LC3-II). We also find that DeltaQ-htt expression in vitro increases autophagosome synthesis and stimulates the Atg5-dependent clearance of truncated N-terminal htt aggregates. DeltaQ-htt's effect on autophagy most likely represents a gain-of-function, as overexpression of full-length wild-type htt in vitro does not increase autophagosome synthesis. Moreover, Hdh(DeltaQ/DeltaQ) mice live significantly longer than wild-type mice, suggesting that autophagy upregulation may be beneficial both in diseases caused by toxic intracellular aggregate-prone proteins and also as a lifespan extender in normal mammals.


Asunto(s)
Autofagia , Longevidad , Proteínas del Tejido Nervioso/genética , Neuronas/patología , Proteínas Nucleares/genética , Péptidos/genética , Eliminación de Secuencia/genética , Animales , Proteína 5 Relacionada con la Autofagia , Conducta Animal , Línea Celular , Modelos Animales de Enfermedad , Humanos , Proteína Huntingtina , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lipofuscina/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Actividad Motora , Neostriado/metabolismo , Neostriado/patología , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Neurópilo/metabolismo , Neurópilo/patología , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Fagosomas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Cuaternaria de Proteína , Transducción de Señal , Serina-Treonina Quinasas TOR
19.
Autophagy ; 19(8): 2395-2397, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36727253

RESUMEN

Age-related human pathologies present with a multitude of molecular and metabolic phenotypes, which individually or synergistically contribute to tissue degeneration. However, current lack of understanding of the interdependence of these molecular pathologies limits the potential range of existing therapeutic intervention strategies. In our study, we set out to understand the chain of molecular events, which underlie the loss of cellular viability in macroautophagy/autophagy deficiency associated with aging and age-related disease. We discover a novel axis linking autophagy, a cellular waste disposal pathway, and a metabolite, nicotinamide adenine dinucleotide (NAD). The axis connects multiple organelles, molecules and stress response pathways mediating cellular demise when autophagy becomes dysfunctional. By elucidating the steps on the path from efficient mitochondrial recycling to NAD maintenance and ultimately cell viability, we highlight targets potentially receptive to therapeutic interventions in a range of genetic and age-related diseases associated with autophagy dysfunction.Abbreviations: IMM: inner mitochondrial membrane; NAD: nicotinamide dinucleotide; OXPHOS: oxidative phosphorylation; PARP: poly(ADP-ribose) polymerase; ROS: reactive oxygen species.


Asunto(s)
Autofagia , NAD , Humanos , Supervivencia Celular , NAD/metabolismo , Mitocondrias/metabolismo , Envejecimiento/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo
20.
Trends Cell Biol ; 33(9): 788-802, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36878731

RESUMEN

Autophagy is an intracellular degradation pathway that recycles subcellular components to maintain metabolic homeostasis. NAD is an essential metabolite that participates in energy metabolism and serves as a substrate for a series of NAD+-consuming enzymes (NADases), including PARPs and SIRTs. Declining levels of autophagic activity and NAD represent features of cellular ageing, and consequently enhancing either significantly extends health/lifespan in animals and normalises metabolic activity in cells. Mechanistically, it has been shown that NADases can directly regulate autophagy and mitochondrial quality control. Conversely, autophagy has been shown to preserve NAD levels by modulating cellular stress. In this review we highlight the mechanisms underlying this bidirectional relationship between NAD and autophagy, and the potential therapeutic targets it provides for combatting age-related disease and promoting longevity.


Asunto(s)
Longevidad , NAD , Animales , NAD/metabolismo , Metabolismo Energético , NAD+ Nucleosidasa/metabolismo , Autofagia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA