Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 32(21): 3029-3039, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37070754

RESUMEN

Recessive mutations in the DNAJB2 gene, encoding the J-domain co-chaperones DNAJB2a and DNAJB2b, have previously been reported as the genetic cause of progressive peripheral neuropathies, rarely involving pyramidal signs, parkinsonism and myopathy. We describe here a family with the first dominantly acting DNAJB2 mutation resulting in a late-onset neuromyopathy phenotype. The c.832 T > G p.(*278Glyext*83) mutation abolishes the stop codon of the DNAJB2a isoform resulting in a C-terminal extension of the protein, with no direct effect predicted on the DNAJB2b isoform of the protein. Analysis of the muscle biopsy showed reduction of both protein isoforms. In functional studies, the mutant protein mislocalized to the endoplasmic reticulum due to a transmembrane helix in the C-terminal extension. The mutant protein underwent rapid proteasomal degradation and also increased the turnover of co-expressed wild-type DNAJB2a, potentially explaining the reduced protein amount in the patient muscle tissue. In line with this dominant negative effect, both wild-type and mutant DNAJB2a were shown to form polydisperse oligomers.


Asunto(s)
Enfermedades Neuromusculares , Enfermedades del Sistema Nervioso Periférico , Humanos , Chaperonas Moleculares/genética , Mutación , Isoformas de Proteínas/genética , Proteínas Mutantes/genética , Proteínas del Choque Térmico HSP40/genética
2.
Acta Neuropathol ; 142(2): 375-393, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33974137

RESUMEN

Using deep phenotyping and high-throughput sequencing, we have identified a novel type of distal myopathy caused by mutations in the Small muscle protein X-linked (SMPX) gene. Four different missense mutations were identified in ten patients from nine families in five different countries, suggesting that this disease could be prevalent in other populations as well. Haplotype analysis of patients with similar ancestry revealed two different founder mutations in Southern Europe and France, indicating that the prevalence in these populations may be higher. In our study all patients presented with highly similar clinical features: adult-onset, usually distal more than proximal limb muscle weakness, slowly progressing over decades with preserved walking. Lower limb muscle imaging showed a characteristic pattern of muscle involvement and fatty degeneration. Histopathological and electron microscopic analysis of patient muscle biopsies revealed myopathic findings with rimmed vacuoles and the presence of sarcoplasmic inclusions, some with amyloid-like characteristics. In silico predictions and subsequent cell culture studies showed that the missense mutations increase aggregation propensity of the SMPX protein. In cell culture studies, overexpressed SMPX localized to stress granules and slowed down their clearance.


Asunto(s)
Miopatías Distales/patología , Proteínas Musculares/genética , Músculo Esquelético/patología , Mutación Missense/genética , Adulto , Miopatías Distales/genética , Humanos , Cuerpos de Inclusión/patología , Persona de Mediana Edad , Debilidad Muscular/patología , Linaje , Gránulos de Estrés
3.
Ann Neurol ; 85(6): 899-906, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30900782

RESUMEN

OBJECTIVE: To clinically and pathologically characterize a cohort of patients presenting with a novel form of distal myopathy and to identify the genetic cause of this new muscular dystrophy. METHODS: We studied 4 families (3 from Spain and 1 from Sweden) suffering from an autosomal dominant distal myopathy. Affected members showed adult onset asymmetric distal muscle weakness with initial involvement of ankle dorsiflexion later progressing also to proximal limb muscles. RESULTS: In all 3 Spanish families, we identified a unique missense variant in the ACTN2 gene cosegregating with the disease. The affected members of the Swedish family carry a different ACTN2 missense variant. INTERPRETATION: ACTN2 encodes for alpha actinin2, which is highly expressed in the sarcomeric Z-disk with a major structural and functional role. Actininopathy is thus a new genetically determined distal myopathy. ANN NEUROL 2019;85:899-906.


Asunto(s)
Actinina/genética , Miopatías Distales/diagnóstico , Miopatías Distales/genética , Genes Dominantes/genética , Mutación Missense/genética , Actinina/química , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Linaje , Estructura Secundaria de Proteína
4.
Int J Mol Sci ; 21(4)2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-32093037

RESUMEN

Skeletal muscle and the nervous system depend on efficient protein quality control, and they express chaperones and cochaperones at high levels to maintain protein homeostasis. Mutations in many of these proteins cause neuromuscular diseases, myopathies, and hereditary motor and sensorimotor neuropathies. In this review, we cover mutations in DNAJB6, DNAJB2, αB-crystallin (CRYAB, HSPB5), HSPB1, HSPB3, HSPB8, and BAG3, and discuss the molecular mechanisms by which they cause neuromuscular disease. In addition, previously unpublished results are presented, showing downstream effects of BAG3 p.P209L on DNAJB6 turnover and localization.


Asunto(s)
Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Enfermedades Musculares/genética , Enfermedades Musculares/metabolismo , Enfermedades Neuromusculares/genética , Enfermedades Neuromusculares/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Regulación de la Expresión Génica/genética , Proteínas del Choque Térmico HSP40/química , Proteínas del Choque Térmico HSP40/genética , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico/química , Humanos , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Enfermedades Musculares/patología , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Enfermedades Neuromusculares/patología , Transducción de Señal/genética , Cadena B de alfa-Cristalina/genética , Cadena B de alfa-Cristalina/metabolismo
5.
Hum Mol Genet ; 24(13): 3718-31, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25877298

RESUMEN

Mutations in the extreme C-terminus of titin (TTN), situated in the sarcomeric M-band, cause tibial muscular dystrophy (TMD) and limb-girdle muscular dystrophy 2J (LGMD2J). The mutations ultimately cause a loss of C-terminal titin, including a binding site for the protease calpain 3 (CAPN3), and lead to a secondary CAPN3 deficiency in LGMD2J muscle. CAPN3 has been previously shown to bind C-terminal titin and to use it as a substrate in vitro. Interestingly, mutations in CAPN3 underlie limb-girdle muscular dystrophy 2A (LGMD2A). Here, we aimed to clarify the relationship of CAPN3 and M-band titin in normal and pathological muscle. In vitro analyses identified several CAPN3 cleavage sites in C-terminal titin that were defined by protein sequencing. Furthermore, cleavage products were detected in normal muscle extracts by western blotting and in situ by immunofluorescence microscopy. The TMD/LGMD2J mutation FINmaj proved to alter this processing in vitro, while binding of CAPN3 to mutant titin was preserved. Unexpectedly, the pathological loss of M-band titin due to TMD/LGMD2J mutations was found to be independent of CAPN3, whereas the involvement of ubiquitous calpains is likely. We conclude that proteolytic processing of C-terminal titin by CAPN3 may have an important role in normal muscle, and that this process is disrupted in LGMD2A and in TMD/LGMD2J due to CAPN3 deficiency and to the loss of C-terminal titin, respectively.


Asunto(s)
Calpaína/metabolismo , Conectina/química , Conectina/metabolismo , Miopatías Distales/metabolismo , Proteínas Musculares/metabolismo , Distrofia Muscular de Cinturas/enzimología , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Secuencias de Aminoácidos , Animales , Calpaína/genética , Conectina/genética , Miopatías Distales/genética , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Musculares/genética , Músculo Esquelético/enzimología , Músculo Esquelético/metabolismo , Distrofia Muscular de Cinturas/genética , Unión Proteica , Proteínas Quinasas/genética , Procesamiento Proteico-Postraduccional , Proteolisis
6.
Ann Neurol ; 75(2): 230-40, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24395473

RESUMEN

OBJECTIVE: Several patients with previously reported titin gene (TTN) mutations causing tibial muscular dystrophy (TMD) have more complex, severe, or unusual phenotypes. This study aimed to clarify the molecular cause of the variant phenotypes in 8 patients of 7 European families. METHODS: Clinical, histopathological, and muscle imaging data of patients and family members were reanalyzed. The titin protein was analyzed by Western blotting and TTN gene by reverse transcription polymerase chain reaction (RT-PCR) and Sanger sequencing. RESULTS: Western blotting showed more pronounced C-terminal titin abnormality than expected for heterozygous probands, suggesting the existence of additional TTN mutations. RT-PCR indicated unequal mRNA expression of the TTN alleles in biopsies of 6 patients, 3 with an limb-girdle muscular dystrophy type 2J (LGMD2J) phenotype. Novel frameshift mutations were identified in 5 patients. A novel A-band titin mutation, c.92167C>T (p.P30723S), was found in 1 patient, and 1 Portuguese patient with a severe TMD phenotype proved to be homozygous for the previously reported Iberian TMD mutation. INTERPRETATION: The unequal expression levels of TTN transcripts in 5 probands suggested severely reduced expression of the frameshift mutated allele, probably through nonsense-mediated decay, explaining the more severe phenotypes. The Iberian TMD mutation may cause a more severe TMD rather than LGMD2J when homozygous. The Finnish patient compound heterozygous for the FINmaj TMD mutation and the novel A-band titin missense mutation showed a phenotype completely different from previously described titinopathies. Our results further expand the complexity of muscular dystrophies caused by TTN mutations and suggest that the coexistence of second mutations may constitute a more common general mechanism explaining phenotype variability.


Asunto(s)
Conectina/genética , Miopatías Distales/genética , Miopatías Distales/patología , Mutación/genética , Adolescente , Adulto , Anciano , Secuencia de Bases , Exones/genética , Exones/inmunología , Salud de la Familia , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Músculo Esquelético/patología , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Población Blanca
7.
Ann Neurol ; 73(4): 500-9, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23401021

RESUMEN

OBJECTIVE: A study was undertaken to identify the molecular cause of Welander distal myopathy (WDM), a classic autosomal dominant distal myopathy. METHODS: The genetic linkage was confirmed and defined by microsatellite and single nucleotide polymorphism haplotyping. The whole linked genomic region was sequenced with targeted high-throughput and Sanger sequencing, and coding transcripts were sequenced on the cDNA level. WDM muscle biopsies were studied by Western blotting and immunofluorescence microscopy. Splicing of TIA1 and its target genes in muscle and myoblast cultures was analyzed by reverse transcriptase polymerase chain reaction. Mutant TIA1 was characterized by cell biological studies on HeLa cells, including quantification of stress granules by high content analysis and fluorescence recovery after photobleaching (FRAP) experiments. RESULTS: The linked haplotype at 2p13 was narrowed down to <806 kb. Sequencing by multiple methods revealed only 1 segregating coding mutation, c.1362 G>A (p.E384K) in the RNA-binding protein TIA1, a key component of stress granules. Immunofluorescence microscopy of WDM biopsies showed a focal increase of TIA1 in atrophic and vacuolated fibers. In HeLa cells, mutant TIA1 constructs caused a mild increase in stress granule abundance compared to wild type, and showed slower average fluorescence recovery in FRAP. INTERPRETATION: WDM is caused by mutated TIA1 through a dominant pathomechanism probably involving altered stress granule dynamics.


Asunto(s)
Miopatías Distales/genética , Predisposición Genética a la Enfermedad/genética , Mutación/genética , Proteínas de Unión a Poli(A)/genética , Células Cultivadas , Femenino , Recuperación de Fluorescencia tras Fotoblanqueo , Ligamiento Genético , Genotipo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Masculino , Repeticiones de Microsatélite/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Fotoblanqueo , Polimorfismo de Nucleótido Simple/genética , Proteínas/genética , Proteínas/metabolismo , Antígeno Intracelular 1 de las Células T , Ubiquitina/metabolismo
8.
medRxiv ; 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38293186

RESUMEN

Distal myopathies are a group of rare, inherited muscular disorders characterized by progressive loss of muscle fibers that begins in the distal parts of arms and legs. Recently, variants in a new disease gene, ACTN2 , have been shown to cause distal myopathy. ACTN2 , a gene previously only associated with cardiomyopathies, encodes alpha-actinin-2, a protein expressed in both cardiac and skeletal sarcomeres. The primary function of alpha-actinin-2 is to link actin and titin to the sarcomere Z-disk. New ACTN2 variants are continuously discovered, however, the clinical significance of many variants remains unknown. Thus, lack of clear genotype-phenotype correlations in ACTN2 -related diseases, actininopathies, persists. Objective: The objective of the study is to characterize the pathomechanisms underlying actininopathies. Methods: Functional characterization in C2C12 cell models of several ACTN2 variants is conducted, including frameshift and missense variants associated with dominant actininopathies. We assess the genotype-phenotype correlations of actininopathies using clinical data from several patients carrying these variants. Results: The results show that the missense variants associated with a recessive form of actininopathy do not cause detectable alpha-actinin-2 aggregates in the cell model. Conversely, dominant frameshift variants causing a protein extension do produce alpha-actinin-2 aggregates. Interpretation: The results suggest that alpha-actinin-2 aggregation is the disease mechanism underlying some dominant actininopathies, and thus we recommend that protein-extending frameshift variants in ACTN2 should be classified as pathogenic. However, this mechanism is likely elicited by only a limited number of variants. Alternative functional characterization methods should be explored to further investigate other molecular mechanisms underlying actininopathies.

9.
Nat Genet ; 56(3): 395-407, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38429495

RESUMEN

In digenic inheritance, pathogenic variants in two genes must be inherited together to cause disease. Only very few examples of digenic inheritance have been described in the neuromuscular disease field. Here we show that predicted deleterious variants in SRPK3, encoding the X-linked serine/argenine protein kinase 3, lead to a progressive early onset skeletal muscle myopathy only when in combination with heterozygous variants in the TTN gene. The co-occurrence of predicted deleterious SRPK3/TTN variants was not seen among 76,702 healthy male individuals, and statistical modeling strongly supported digenic inheritance as the best-fitting model. Furthermore, double-mutant zebrafish (srpk3-/-; ttn.1+/-) replicated the myopathic phenotype and showed myofibrillar disorganization. Transcriptome data suggest that the interaction of srpk3 and ttn.1 in zebrafish occurs at a post-transcriptional level. We propose that digenic inheritance of deleterious changes impacting both the protein kinase SRPK3 and the giant muscle protein titin causes a skeletal myopathy and might serve as a model for other genetic diseases.


Asunto(s)
Enfermedades Musculares , Pez Cebra , Animales , Humanos , Masculino , Conectina/genética , Conectina/metabolismo , Músculo Esquelético , Enfermedades Musculares/genética , Enfermedades Musculares/metabolismo , Enfermedades Musculares/patología , Mutación , Pez Cebra/genética
10.
Hum Mol Genet ; 19(23): 4608-24, 2010 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-20855473

RESUMEN

The dominant tibial muscular dystrophy (TMD) and recessive limb-girdle muscular dystrophy 2J are allelic disorders caused by mutations in the C-terminus of titin, a giant sarcomeric protein. Both clinical presentations were initially identified in a large Finnish family and linked to a founder mutation (FINmaj). To further understand the physiopathology of these two diseases, we generated a mouse model carrying the FINmaj mutation. In heterozygous mice, dystrophic myopathology appears late at 9 months of age in few distal muscles. In homozygous (HO) mice, the first signs appear in the Soleus at 1 month of age and extend to most muscles at 6 months of age. Interestingly, the heart is also severely affected in HO mice. The mutation leads to the loss of the very C-terminal end of titin and to a secondary deficiency of calpain 3, a partner of titin. By crossing the FINmaj model with a calpain 3-deficient model, the TMD phenotype was corrected, demonstrating a participation of calpain 3 in the pathogenesis of this disease.


Asunto(s)
Calpaína/metabolismo , Modelos Animales de Enfermedad , Miopatías Distales , Proteínas Musculares/metabolismo , Distrofia Muscular de Cinturas , Animales , Western Blotting , Calpaína/deficiencia , Calpaína/genética , Conectina , Análisis Mutacional de ADN , Miopatías Distales/genética , Miopatías Distales/metabolismo , Miopatías Distales/patología , Ecocardiografía , Ligamiento Genético , Predisposición Genética a la Enfermedad , Heterocigoto , Ratones , Microscopía Electrónica , Proteínas Musculares/deficiencia , Proteínas Musculares/genética , Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/metabolismo , Distrofia Muscular de Cinturas/patología , Mutación , Reacción en Cadena de la Polimerasa , Proteínas Quinasas/genética , Sarcómeros/genética , Sarcómeros/ultraestructura
11.
J Neurol ; 269(8): 4161-4173, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35237874

RESUMEN

OBJECTIVE: Inclusion body myositis (IBM) has an unclear molecular etiology exhibiting both characteristic inflammatory T-cell activity and rimmed-vacuolar degeneration of muscle fibers. Using in-depth gene expression and splicing studies, we aimed at understanding the different components of the molecular pathomechanisms in IBM. METHODS: We performed RNA-seq on RNA extracted from skeletal muscle biopsies of clinically and histopathologically defined IBM (n = 24), tibial muscular dystrophy (n = 6), and histopathologically normal group (n = 9). In a comprehensive transcriptomics analysis, we analyzed the differential gene expression, differential splicing and exon usage, downstream pathway analysis, and the interplay between coding and non-coding RNAs (micro RNAs and long non-coding RNAs). RESULTS: We observe dysregulation of genes involved in calcium homeostasis, particularly affecting the T-cell activity and regulation, causing disturbed Ca2+-induced apoptotic pathways of T cells in IBM muscles. Additionally, LCK/p56, which is an essential gene in regulating the fate of T-cell apoptosis, shows increased expression and altered splicing usage in IBM muscles. INTERPRETATION: Our analysis provides a novel understanding of the molecular mechanisms in IBM by showing a detailed dysregulation of genes involved in calcium homeostasis and its effect on T-cell functioning in IBM muscles. Loss of T-cell regulation is hypothesized to be involved in the consistent observation of no response to immune therapies in IBM patients. Our results show that loss of apoptotic control of cytotoxic T cells could indeed be one component of their abnormal cytolytic activity in IBM muscles.


Asunto(s)
Miositis por Cuerpos de Inclusión , Miositis , Apoptosis/genética , Calcio/metabolismo , Homeostasis/genética , Humanos , Músculo Esquelético/patología , Miositis por Cuerpos de Inclusión/genética , Linfocitos T/patología , Transcriptoma
12.
J Biol Chem ; 285(39): 30304-15, 2010 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-20634290

RESUMEN

Mutations in the C terminus of titin, situated at the M-band of the striated muscle sarcomere, cause tibial muscular dystrophy (TMD) and limb-girdle muscular dystrophy (LGMD) type 2J. Mutations in the protease calpain 3 (CAPN3), in turn, lead to LGMD2A, and secondary CAPN3 deficiency in LGMD2J suggests that the pathomechanisms of the diseases are linked. Yeast two-hybrid screens carried out to elucidate the molecular pathways of TMD/LGMD2J and LGMD2A resulted in the identification of myospryn (CMYA5, cardiomyopathy-associated 5) as a binding partner for both M-band titin and CAPN3. Additional yeast two-hybrid and coimmunoprecipitation studies confirmed both interactions. The interaction of myospryn and M-band titin was supported by localization of endogenous and transfected myospryn at the M-band level. Coexpression studies showed that myospryn is a proteolytic substrate for CAPN3 and suggested that myospryn may protect CAPN3 from autolysis. Myospryn is a muscle-specific protein of the tripartite motif superfamily, reported to function in vesicular trafficking and protein kinase A signaling and implicated in the pathogenesis of Duchenne muscular dystrophy. The novel interactions indicate a role for myospryn in the sarcomeric M-band and may be relevant for the molecular pathomechanisms of TMD/LGMD2J and LGMD2A.


Asunto(s)
Calpaína/metabolismo , Proteínas Musculares/metabolismo , Distrofia Muscular de Cinturas/metabolismo , Proteínas Quinasas/metabolismo , Secuencias de Aminoácidos , Transporte Biológico , Calpaína/genética , Conectina , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Humanos , Proteínas Musculares/genética , Distrofia Muscular de Cinturas/genética , Mutación , Unión Proteica , Proteínas Quinasas/genética , Sarcómeros/genética , Sarcómeros/metabolismo , Transducción de Señal , Técnicas del Sistema de Dos Híbridos
13.
Neurol Genet ; 7(6): e632, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34722876

RESUMEN

BACKGROUND AND OBJECTIVES: To determine the genetic cause of the disease in the previously reported family with adult-onset autosomal dominant distal myopathy (myopathy, distal, 3; MPD3). METHODS: Continued clinical evaluation including muscle MRI and muscle pathology. A linkage analysis with single nucleotide polymorphism arrays and genome sequencing were used to identify the genetic defect, which was verified by Sanger sequencing. RNA sequencing was used to investigate the transcriptional effects of the identified genetic defect. RESULTS: Small hand muscles (intrinsic, thenar, and hypothenar) were first involved with spread to the lower legs and later proximal muscles. Dystrophic changes with rimmed vacuoles and cytoplasmic inclusions were observed in muscle biopsies at advanced stage. A single nucleotide polymorphism array confirmed the previous microsatellite-based linkage to 8p22-q11 and 12q13-q22. Genome sequencing of three affected family members combined with structural variant calling revealed a small heterozygous deletion of 160 base pairs spanning the second last exon 10 of the heterogeneous nuclear ribonucleoprotein A1 (HNRNPA1) gene, which is in the linked region on chromosome 12. Segregation of the mutation with the disease was confirmed by Sanger sequencing. RNA sequencing showed that the mutant allele produces a shorter mutant mRNA transcript compared with the wild-type allele. Immunofluorescence studies on muscle biopsies revealed small p62 and larger TDP-43 inclusions. DISCUSSION: A small exon 10 deletion in the gene HNRNPA1 was identified as the cause of MPD3 in this family. The new HNRNPA1-related phenotype, upper limb presenting distal myopathy, was thus confirmed, and the family displays the complexities of gene identification.

14.
J Neurol Neurosurg Psychiatry ; 81(8): 834-9, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20682716

RESUMEN

INTRODUCTION: Two families with autosomal dominant limb girdle muscular dystrophy (LGMD) have previously been linked to a locus on chromosome 7q36 10 years ago. The locus has been termed both LGMD1D and 1E, but because of lack of additional families to narrow down the linked region of interest, this disease has remained elusive. METHODS: A large Finnish family was clinically and genetically investigated. Laboratory parameters were determined, including creatine kinase (CK) value, neurographic and electromyography studies, cardiac and respiratory function examinations, muscle biopsies and muscle imaging by CT or MRI. RESULTS: Patients had onset of muscle weakness in the pelvic girdle between the fourth and sixth decades with an autosomal dominant pattern of inheritance. CK values were slightly elevated and electromyography was myopathic only. Muscle biopsies showed myopathic and/or dystrophic features with very minor rimmed vacuolation and protein aggregation findings. Molecular genetic analysis indicates linkage of the disease to the locus on chromosome 7q36 completely overlapping with the previously reported locus LGMD1D/E. DISCUSSION: Advancement towards the causative gene defect in the 7q36 linked disease needs new additional families to narrow the region of interest. The phenotype in the previously linked families has not been reported in full detail, which may be one reason for the shortage of additional families. A comprehensive clinical and morphological phenotype of chromosome 7q36 linked autosomal dominant LGMD with a restricted and updated 6.4 Mb sized haplotype is reported here.


Asunto(s)
Cromosomas Humanos Par 7/genética , Distrofia Muscular de Cinturas/genética , Adulto , Edad de Inicio , Anciano , Creatina Quinasa/sangre , Electromiografía , Familia , Femenino , Finlandia , Ligamiento Genético , Estudio de Asociación del Genoma Completo , Humanos , Inmunohistoquímica , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Debilidad Muscular/etiología , Debilidad Muscular/fisiopatología , Músculo Esquelético/patología , Distrofia Muscular de Cinturas/patología , Linaje , Tomografía Computarizada por Rayos X , Adulto Joven
15.
Acta Myol ; 39(4): 245-265, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33458580

RESUMEN

Distal myopathies are genetic primary muscle disorders with a prominent weakness at onset in hands and/or feet. The age of onset (from early childhood to adulthood), the distribution of muscle weakness (upper versus lower limbs) and the histological findings (ranging from nonspecific myopathic changes to myofibrillar disarrays and rimmed vacuoles) are extremely variable. However, despite being characterized by a wide clinical and genetic heterogeneity, the distal myopathies are a category of muscular dystrophies: genetic diseases with progressive loss of muscle fibers. Myopathic congenital arthrogryposis is also a form of distal myopathy usually caused by focal amyoplasia. Massive parallel sequencing has further expanded the long list of genes associated with a distal myopathy, and contributed identifying as distal myopathy-causative rare variants in genes more often related with other skeletal or cardiac muscle diseases. Currently, almost 20 genes (ACTN2, CAV3, CRYAB, DNAJB6, DNM2, FLNC, HNRNPA1, HSPB8, KHLH9, LDB3, MATR3, MB, MYOT, PLIN4, TIA1, VCP, NOTCH2NLC, LRP12, GIPS1) have been associated with an autosomal dominant form of distal myopathy. Pathogenic changes in four genes (ADSSL, ANO5, DYSF, GNE) cause an autosomal recessive form; and disease-causing variants in five genes (DES, MYH7, NEB, RYR1 and TTN) result either in a dominant or in a recessive distal myopathy. Finally, a digenic mechanism, underlying a Welander-like form of distal myopathy, has been recently elucidated. Rare pathogenic mutations in SQSTM1, previously identified with a bone disease (Paget disease), unexpectedly cause a distal myopathy when combined with a common polymorphism in TIA1. The present review aims at describing the genetic basis of distal myopathy and at summarizing the clinical features of the different forms described so far.


Asunto(s)
Miopatías Distales/diagnóstico , Edad de Inicio , Miopatías Distales/genética , Humanos
16.
Neuromuscul Disord ; 30(1): 38-46, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31955980

RESUMEN

Eight patients from five families with undiagnosed dominant distal myopathy underwent clinical, neurophysiological and muscle biopsy examinations. Molecular genetic studies were performed using targeted sequencing of all known myopathy genes followed by segregation of the identified mutations in the affected families using Sanger sequencing. Two novel mutations in DNAJB6 J domain, c.149C>T (p.A50V) and c.161A>C (p.E54A), were identified as the cause of disease. The muscle involvement with p.A50V was distal calf-predominant, and the p.E54A was more proximo-distal. Histological findings were similar to those previously reported in DNAJB6 myopathy. In line with reported pathogenic mutations in the glycine/phenylalanine (G/F) domain of DNAJB6, both the novel mutations showed reduced anti-aggregation capacity by filter trap assay and TDP-43 disaggregation assays. Modeling of the protein showed close proximity of the mutated residues with the G/F domain. Myopathy-causing mutations in DNAJB6 are not only located in the G/F domain, but also in the J domain. The identified mutations in the J domain cause dominant distal and proximo-distal myopathy, confirming that mutations in DNAJB6 should be considered in distal myopathy cases.


Asunto(s)
Miopatías Distales/genética , Proteínas del Choque Térmico HSP40/genética , Chaperonas Moleculares/genética , Proteínas del Tejido Nervioso/genética , Adulto , Anciano , Anciano de 80 o más Años , Miopatías Distales/diagnóstico , Miopatías Distales/patología , Miopatías Distales/fisiopatología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Linaje
17.
Neuromuscul Disord ; 18(12): 922-8, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18948003

RESUMEN

Mutations in C-terminal titin cause autosomal dominant tibial muscular dystrophy (TMD) as reported previously. Samples from 25 new families and 25 sporadic new distal myopathy cases were screened for titin mutations. Three novel mutations were discovered in two families from Spain and two families from France. Two mutations, g.292998delT and g.293376delA lead to frameshift and premature stop codons in the second last and the last titin gene (TTN) exons, Mex5 and Mex6, respectively. The third was a nonsense mutation g.293379C>T (p.Q33396X) in Mex6. Patients with the upstream Mex5 mutation showed a more severe phenotype with earlier onset implying a genotype-phenotype correlation.


Asunto(s)
Miopatías Distales/genética , Proteínas Musculares/genética , Mutación , Proteínas Quinasas/genética , Adulto , Anciano , Secuencia de Bases , Western Blotting , Codón sin Sentido , Conectina , Análisis Mutacional de ADN , Miopatías Distales/metabolismo , Miopatías Distales/patología , Femenino , Mutación del Sistema de Lectura , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Linaje , Fenotipo , Proteínas Quinasas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Índice de Severidad de la Enfermedad , Tomógrafos Computarizados por Rayos X
18.
J Muscle Res Cell Motil ; 29(6-8): 177-80, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19140017

RESUMEN

Myospryn (CMYA5, cardiomyopathy-associated 5) is a muscle-specific member of the TRIM superfamily, discovered a few years ago. Properties and functions of the little-studied protein remain largely enigmatic, but identified interactions have suggested that myospryn is involved in two seemingly distinct processes, protein kinase A signalling and vesicular trafficking. Recent findings have implicated myospryn in Duchenne muscular dystrophy and cardiac disease, making it an exciting new player in the field of muscle biology and pathology.


Asunto(s)
Proteínas Musculares/química , Proteínas Musculares/fisiología , Animales , Cardiomiopatías/enzimología , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Vesículas Citoplasmáticas/metabolismo , Humanos , Distrofia Muscular de Duchenne/enzimología , Distrofia Muscular de Duchenne/metabolismo , Transporte de Proteínas , Transducción de Señal/fisiología
19.
Cell Metab ; 28(2): 268-281.e4, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-29937374

RESUMEN

The circadian clock coordinates behavioral and circadian cues with availability and utilization of nutrients. Proteasomal degradation of clock repressors, such as cryptochrome (CRY)1, maintains periodicity. Whether macroautophagy, a quality control pathway, degrades circadian proteins remains unknown. Here we show that circadian proteins BMAL1, CLOCK, REV-ERBα, and CRY1 are lysosomal targets, and that macroautophagy affects the circadian clock by selectively degrading CRY1. Autophagic degradation of CRY1, an inhibitor of gluconeogenesis, occurs in a diurnal window when rodents rely on gluconeogenesis, suggesting that CRY1 degradation is time-imprinted to maintenance of blood glucose. High-fat feeding accelerates autophagic CRY1 degradation and contributes to obesity-associated hyperglycemia. CRY1 contains several light chain 3 (LC3)-interacting region (LIR) motifs, which facilitate the interaction of cargo proteins with the autophagosome marker LC3. Using mutational analyses, we identified two distinct LIRs on CRY1 that exert circadian glycemic control by regulating CRY1 degradation, revealing LIRs as potential targets for controlling hyperglycemia.


Asunto(s)
Autofagia , Relojes Circadianos , Criptocromos/metabolismo , Glucosa/metabolismo , Hiperglucemia/metabolismo , Hígado/metabolismo , Factores de Transcripción ARNTL/metabolismo , Animales , Proteínas CLOCK/metabolismo , Ritmo Circadiano , Dieta Alta en Grasa/métodos , Gluconeogénesis , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/metabolismo , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Proteolisis
20.
J Clin Invest ; 128(3): 1164-1177, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29457785

RESUMEN

Multisystem proteinopathy (MSP) involves disturbances of stress granule (SG) dynamics and autophagic protein degradation that underlie the pathogenesis of a spectrum of degenerative diseases that affect muscle, brain, and bone. Specifically, identical mutations in the autophagic adaptor SQSTM1 can cause varied penetrance of 4 distinct phenotypes: amyotrophic lateral sclerosis (ALS), frontotemporal dementia, Paget's disease of the bone, and distal myopathy. It has been hypothesized that clinical pleiotropy relates to additional genetic determinants, but thus far, evidence has been lacking. Here, we provide evidence that a TIA1 (p.N357S) variant dictates a myodegenerative phenotype when inherited, along with a pathogenic SQSTM1 mutation. Experimentally, the TIA1-N357S variant significantly enhances liquid-liquid-phase separation in vitro and impairs SG dynamics in living cells. Depletion of SQSTM1 or the introduction of a mutant version of SQSTM1 similarly impairs SG dynamics. TIA1-N357S-persistent SGs have increased association with SQSTM1, accumulation of ubiquitin conjugates, and additional aggregated proteins. Synergistic expression of the TIA1-N357S variant and a SQSTM1-A390X mutation in myoblasts leads to impaired SG clearance and myotoxicity relative to control myoblasts. These findings demonstrate a pathogenic connection between SG homeostasis and ubiquitin-mediated autophagic degradation that drives the penetrance of an MSP phenotype.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Miopatías Distales/genética , Demencia Frontotemporal/genética , Osteítis Deformante/genética , Proteína Sequestosoma-1/genética , Antígeno Intracelular 1 de las Células T/genética , Anciano , Animales , Autofagia , Línea Celular , Estudios de Cohortes , Femenino , Fibroblastos/metabolismo , Homeostasis , Humanos , Masculino , Ratones , Persona de Mediana Edad , Músculo Esquelético/fisiopatología , Mutación , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA