Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 18(1): e1010003, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35025875

RESUMEN

The paternally expressed gene 3 (Pw1/Peg3) is a mammalian-specific parentally imprinted gene expressed in stem/progenitor cells of the brain and endocrine tissues. Here, we compared phenotypic characteristics in Pw1/Peg3 deficient male and female mice. Our findings indicate that Pw1/Peg3 is a key player for the determination of sexual dimorphism in metabolism and behavior. Mice carrying a paternally inherited Pw1/Peg3 mutant allele manifested postnatal deficits in GH/IGF dependent growth before weaning, sex steroid dependent masculinization during puberty, and insulin dependent fat accumulation in adulthood. As a result, Pw1/Peg3 deficient mice develop a sex-dependent global shift of body metabolism towards accelerated adiposity, diabetic-like insulin resistance, and fatty liver. Furthermore, Pw1/Peg3 deficient males displayed reduced social dominance and competitiveness concomitant with alterations in the vasopressinergic architecture in the brain. This study demonstrates that Pw1/Peg3 provides an epigenetic context that promotes male-specific characteristics through sex steroid pathways during postnatal development.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Adiposidad , Animales , Tamaño Corporal , Femenino , Regulación del Desarrollo de la Expresión Génica , Técnicas de Inactivación de Genes , Impresión Genómica , Factores de Transcripción de Tipo Kruppel/metabolismo , Masculino , Ratones , Herencia Paterna , Fenotipo , Caracteres Sexuales
2.
Circulation ; 147(6): 498-511, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36484260

RESUMEN

BACKGROUND: Myocardial infarction (MI) induces a repair response that ultimately generates a stable fibrotic scar. Although the scar prevents cardiac rupture, an excessive profibrotic response impairs optimal recovery by promoting the development of noncontractile fibrotic areas. The mechanisms that lead to cardiac fibrosis are diverse and incompletely characterized. We explored whether the expansion of cardiac fibroblasts after MI can be regulated through a paracrine action of cardiac stromal cells. METHODS: We performed a bioinformatic secretome analysis of cardiac stromal PW1+ cells isolated from normal and post-MI mouse hearts to identify novel secreted proteins. Functional assays were used to screen secreted proteins that promote fibroblast proliferation. The expressions of candidates were subsequently analyzed in mouse and human hearts and plasmas. The relationship between levels of circulating protein candidates and adverse post-MI cardiac remodeling was examined in a cohort of 80 patients with a first ST-segment-elevation MI and serial cardiac magnetic resonance imaging evaluations. RESULTS: Cardiac stromal PW1+ cells undergo a change in paracrine behavior after MI, and the conditioned media from these cells induced a significant increase in the proliferation of fibroblasts. We identified a total of 12 candidates as secreted proteins overexpressed by cardiac PW1+ cells after MI. Among these factors, GDF3 (growth differentiation factor 3), a member of the TGF-ß (transforming growth factor-ß) family, was markedly upregulated in the ischemic hearts. Conditioned media specifically enriched with GDF3 induced fibroblast proliferation at a high level by stimulation of activin-receptor-like kinases. In line with the secretory nature of this protein, we next found that GDF3 can be detected in mice and human plasma samples, with a significant increase in the days after MI. In humans, higher GDF3 circulating levels (measured in the plasma at day 4 after MI) were significantly associated with an increased risk of adverse remodeling 6 months after MI (adjusted odds ratio, 1.76 [1.03-3.00]; P=0.037), including lower left ventricular ejection fraction and a higher proportion of akinetic segments. CONCLUSIONS: Our findings define a mechanism for the profibrotic action of cardiac stromal cells through secreted cardiokines, such as GDF3, a candidate marker of adverse fibrotic remodeling after MI. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier: NCT01113268.


Asunto(s)
Infarto del Miocardio , Miocardio , Animales , Humanos , Ratones , Cicatriz/patología , Medios de Cultivo Condicionados/farmacología , Medios de Cultivo Condicionados/metabolismo , Modelos Animales de Enfermedad , Fibrosis , Factor 3 de Diferenciación de Crecimiento/metabolismo , Miocardio/metabolismo , Volumen Sistólico , Factor de Crecimiento Transformador beta/metabolismo , Función Ventricular Izquierda , Remodelación Ventricular
3.
PLoS Genet ; 12(5): e1006053, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27187722

RESUMEN

Parental imprinting is a mammalian-specific form of epigenetic regulation in which one allele of a gene is silenced depending on its parental origin. Parentally imprinted genes have been shown to play a role in growth, metabolism, cancer, and behavior. Although the molecular mechanisms underlying parental imprinting have been largely elucidated, the selective advantage of silencing one allele remains unclear. The mutant phenotype of the imprinted gene, Pw1/Peg3, provides a key example to illustrate the hypothesis on a coadaptation between mother and offspring, in which Pw1/Peg3 is required for a set of essential maternal behaviors, such as nursing, nest building, and postnatal care. We have generated a novel Pw1/Peg3 mutant allele that targets the last exon for the PW1 protein that contains >90% of the coding sequence resulting in a loss of Pw1/Peg3 expression. In contrast to previous reports that have targeted upstream exons, we observe that maternal behavior and lactation are not disrupted upon loss of Pw1/Peg3. Both paternal and homozygous Pw1/Peg3 mutant females nurse and feed their pups properly and no differences are detected in either oxytocin neuron number or oxytocin plasma levels. In addition, suckling capacities are normal in mutant pups. Consistent with previous reports, we observe a reduction of postnatal growth. These results support a general role for Pw1/Peg3 in the regulation of body growth but not maternal care and lactation.


Asunto(s)
Epigénesis Genética , Factores de Transcripción de Tipo Kruppel/genética , Conducta Materna , Proteínas Mutantes/genética , Alelos , Animales , Exones , Femenino , Regulación de la Expresión Génica , Impresión Genómica/genética , Humanos , Factores de Transcripción de Tipo Kruppel/biosíntesis , Lactancia/genética , Ratones , Proteínas Mutantes/biosíntesis , Neuronas/metabolismo
4.
Stem Cells ; 35(5): 1328-1340, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28090691

RESUMEN

Vascular associated endothelial cell (ECs) progenitors are still poorly studied and their role in the newly forming vasculature at embryonic or postnatal stage remains elusive. In the present work, we first defined a set of genes highly expressed during embryo development and strongly downregulated in the adult mouse. In this group, we then concentrated on the progenitor cell marker Peg3/PW1. By in vivo staining of the vasculature we found that only a subset of cells coexpressed endothelial markers and PW1. These cells were quite abundant in the embryo vasculature but declined in number at postnatal and adult stages. Using a reporter mouse for PW1 expression, we have been able to isolate PW1-positive (PW1posECs) and negative endothelial cells (PW1negECs). PW1-positive cells were highly proliferative in comparison to PW1negECs and were able to form colonies when seeded at clonal dilution. Furthermore, by RNAseq analysis, PW1posECs expressed endothelial cell markers together with mesenchymal and stem cell markers. When challenged by endothelial growth factors in vitro, PW1posECs were able to proliferate more than PW1negECs and to efficiently form new vessels in vivo. Taken together these data identify a subset of vessel associated endothelial cells with characteristics of progenitor cells. Considering their high proliferative potential these cells may be of particular importance to design therapies to improve the perfusion of ischemic tissues or to promote vascular repair. Stem Cells 2017;35:1328-1340.


Asunto(s)
Vasos Sanguíneos/citología , Células Progenitoras Endoteliales/citología , Células Progenitoras Endoteliales/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Animales , Biomarcadores/metabolismo , Vasos Sanguíneos/embriología , Vasos Sanguíneos/metabolismo , Proliferación Celular/efectos de los fármacos , Separación Celular , Desarrollo Embrionario/efectos de los fármacos , Células Progenitoras Endoteliales/efectos de los fármacos , Perfilación de la Expresión Génica , Péptidos y Proteínas de Señalización Intercelular/farmacología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Ratones Endogámicos C57BL , Neovascularización Fisiológica/efectos de los fármacos , Fenotipo
5.
Stem Cells ; 35(4): 1015-1027, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27862634

RESUMEN

Pw1/Peg3 is a parentally imprinted gene expressed in adult stem cells in every tissue thus far examined including the stem cells of the hair follicle. Using a Pw1/Peg3 reporter mouse, we carried out a detailed dissection of the stem cells in the bulge, which is a major stem cell compartment of the hair follicle in mammalian skin. We observed that PW1/Peg3 expression initiates upon placode formation during fetal development, coincident with the establishment of the bulge stem cells. In the adult, we observed that PW1/Peg3 expression is found in both CD34+ and CD34- populations of bulge stem cells. We demonstrate that both populations can give rise to new hair follicles, reconstitute their niche, and self-renew. These results demonstrate that PW1/Peg3 is a reliable marker of the full population of follicle stem cells and reveal a novel CD34- bulge stem-cell population. Stem Cells 2017;35:1015-1027.


Asunto(s)
Antígenos CD34/metabolismo , Folículo Piloso/citología , Factores de Transcripción de Tipo Kruppel/metabolismo , Células Madre/citología , Células Madre/metabolismo , Envejecimiento/fisiología , Animales , Animales Recién Nacidos , Biomarcadores/metabolismo , Autorrenovación de las Células , Separación Celular , Expresión Génica , Genes Reporteros , Ratones Endogámicos C57BL , Coloración y Etiquetado , Nicho de Células Madre
6.
Circ Res ; 118(5): 822-33, 2016 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-26838788

RESUMEN

RATIONALE: Pulmonary arterial hypertension is characterized by vascular remodeling and neomuscularization. PW1(+) progenitor cells can differentiate into smooth muscle cells (SMCs) in vitro. OBJECTIVE: To determine the role of pulmonary PW1(+) progenitor cells in vascular remodeling characteristic of pulmonary arterial hypertension. METHODS AND RESULTS: We investigated their contribution during chronic hypoxia-induced vascular remodeling in Pw1(nLacZ+/-) mouse expressing ß-galactosidase in PW1(+) cells and in differentiated cells derived from PW1(+) cells. PW1(+) progenitor cells are present in the perivascular zone in rodent and human control lungs. Using progenitor markers, 3 distinct myogenic PW1(+) cell populations were isolated from the mouse lung of which 2 were significantly increased after 4 days of chronic hypoxia. The number of proliferating pulmonary PW1(+) cells and the proportion of ß-gal(+) vascular SMC were increased, indicating a recruitment of PW1(+) cells and their differentiation into vascular SMC during early chronic hypoxia-induced neomuscularization. CXCR4 inhibition using AMD3100 prevented PW1(+) cells differentiation into SMC but did not inhibit their proliferation. Bone marrow transplantation experiments showed that the newly formed ß-gal(+) SMC were not derived from circulating bone marrow-derived PW1(+) progenitor cells, confirming a resident origin of the recruited PW1(+) cells. The number of pulmonary PW1(+) cells was also increased in rats after monocrotaline injection. In lung from pulmonary arterial hypertension patients, PW1-expressing cells were observed in large numbers in remodeled vascular structures. CONCLUSIONS: These results demonstrate the existence of a novel population of resident SMC progenitor cells expressing PW1 and participating in pulmonary hypertension-associated vascular remodeling.


Asunto(s)
Hipertensión Pulmonar/metabolismo , Factores de Transcripción de Tipo Kruppel/biosíntesis , Músculo Liso Vascular/metabolismo , Células Madre/metabolismo , Remodelación Vascular/fisiología , Animales , Células Cultivadas , Humanos , Hipertensión Pulmonar/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Músculo Liso Vascular/patología , Ratas , Células Madre/patología
7.
FASEB J ; 30(4): 1404-15, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26672000

RESUMEN

Understanding the regulation of the stem cell fate is fundamental for designing novel regenerative medicine strategies. Previous studies have suggested that pharmacological treatments with small molecules provide a robust and reversible regulation of the stem cell program. Previously, we showed that treatment with a vanadium compound influences muscle cell fatein vitro In this study, we demonstrate that treatment with the phosphotyrosine phosphatase inhibitor bisperoxovanadium (BpV) drives primary muscle cells to a poised stem cell stage, with enhanced function in muscle regenerationin vivofollowing transplantation into injured muscles. Importantly, BpV-treated cells displayed increased self-renewal potentialin vivoand replenished the niche in both satellite and interstitial cell compartments. Moreover, we found that BpV treatment induces specific activating chromatin modifications at the promoter regions of genes associated with stem cell fate, includingSca-1andPw1 Thus, our findings indicate that BpV resets the cell fate program by specific epigenetic regulations, such that the committed myogenic cell fate is redirected to an earlier progenitor cell fate stage, which leads to an enhanced regenerative stem cell potential.-Smeriglio, P., Alonso-Martin, S., Masciarelli, S., Madaro, L., Iosue, I., Marrocco, V., Relaix, F., Fazi, F., Marazzi, G., Sassoon, D. A., Bouché, M. Phosphotyrosine phosphatase inhibitor bisperoxovanadium endows myogenic cells with enhanced muscle stem cell functionsviaepigenetic modulation of Sca-1 and Pw1 promoters.


Asunto(s)
Antígenos Ly/genética , Epigénesis Genética , Factores de Transcripción de Tipo Kruppel/genética , Proteínas de la Membrana/genética , Células Musculares/efectos de los fármacos , Mioblastos Esqueléticos/efectos de los fármacos , Regiones Promotoras Genéticas/genética , Compuestos de Vanadio/farmacología , Animales , Western Blotting , Línea Celular , Células Cultivadas , Expresión Génica/efectos de los fármacos , Ratones Desnudos , Ratones Transgénicos , Microscopía Fluorescente , Células Musculares/citología , Células Musculares/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/lesiones , Músculo Esquelético/fisiopatología , Mioblastos Esqueléticos/citología , Mioblastos Esqueléticos/metabolismo , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores , Proteínas Tirosina Fosfatasas/metabolismo , Regeneración/efectos de los fármacos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
8.
Diabetologia ; 59(7): 1474-1479, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27130279

RESUMEN

AIMS/HYPOTHESIS: Pw1 or paternally-expressed gene 3 (Peg3) encodes a zinc finger transcription factor that is widely expressed during mouse embryonic development and later restricted to multiple somatic stem cell lineages in the adult. The aim of the present study was to define Pw1 expression in the embryonic and adult pancreas and investigate its role in the beta cell cycle in Pw1 wild-type and mutant mice. METHODS: We analysed PW1 expression by immunohistochemistry in pancreas of nonpregant and pregnant mice and following injury by partial duct ligation. Its role in the beta cell cycle was studied in vivo using a novel conditional knockout mouse and in vitro by lentivirus-mediated gene knockdown. RESULTS: We showed that PW1 is expressed in early pancreatic progenitors at E9.5 but becomes progressively restricted to fully differentiated beta cells as they become established after birth and withdraw from the cell cycle. Notably, PW1 expression declines when beta cells are induced to proliferate and loss of PW1 function activates the beta cell cycle. CONCLUSIONS/INTERPRETATION: These results indicate that PW1 is a co-regulator of the beta cell cycle and can thus be considered a novel therapeutic target in diabetes.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Páncreas/metabolismo , Animales , Ciclo Celular/genética , Ciclo Celular/fisiología , Proliferación Celular/genética , Proliferación Celular/fisiología , Inmunohistoquímica , Células Secretoras de Insulina/citología , Factores de Transcripción de Tipo Kruppel/genética , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Páncreas/embriología
9.
Development ; 140(14): 2879-91, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23739133

RESUMEN

The satellite cell is the major tissue-resident stem cell underlying muscle regeneration; however, multiple non-satellite myogenic progenitors as well as non-myogenic populations that support the muscle regenerative process have been identified. PW1 is expressed in satellite cells as well as in a subset of interstitial cells with myogenic potential termed PICs (PW1+ interstitial cells). Microarray profiling revealed that PICs express a broad range of genes common to mesenchymal stem cells, whereas satellite cells express genes consistent with a committed myogenic progenitor. Isolated PICs from both young and adult muscles can differentiate into smooth and skeletal muscle and fat whereas satellite cells are restricted to a skeletal muscle fate. We demonstrate that the adipogenic potential of PICs corresponds to a subpopulation that expresses platelet derived growth factor receptor alpha (PDGFRα) and overlaps with the recently described interstitial adipogenic progenitors. By contrast, PICs with myogenic potential do not express PDGFRα. Moreover, we observe a discrete and transient population of juvenile PICs based upon SCA1 expression that disappears by 3 weeks of postnatal development coincident with a switch in the cellular and genetic mechanisms underlying postnatal muscle growth.


Asunto(s)
Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/citología , Adipogénesis , Animales , Células Cultivadas , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/metabolismo , Células Satélite del Músculo Esquelético/metabolismo , Transcriptoma
10.
PLoS Genet ; 8(4): e1002605, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22511876

RESUMEN

Environmental factors during early life are critical for the later metabolic health of the individual and of future progeny. In our obesogenic environment, it is of great socioeconomic importance to investigate the mechanisms that contribute to the risk of metabolic ill health. Imprinted genes, a class of functionally mono-allelic genes critical for early growth and metabolic axis development, have been proposed to be uniquely susceptible to environmental change. Furthermore, it has also been suggested that perturbation of the epigenetic reprogramming of imprinting control regions (ICRs) may play a role in phenotypic heritability following early life insults. Alternatively, the presence of multiple layers of epigenetic regulation may in fact protect imprinted genes from such perturbation. Unbiased investigation of these alternative hypotheses requires assessment of imprinted gene expression in the context of the response of the whole transcriptome to environmental assault. We therefore analyse the role of imprinted genes in multiple tissues in two affected generations of an established murine model of the developmental origins of health and disease using microarrays and quantitative RT-PCR. We demonstrate that, despite the functional mono-allelicism of imprinted genes and their unique mechanisms of epigenetic dosage control, imprinted genes as a class are neither more susceptible nor protected from expression perturbation induced by maternal undernutrition in either the F1 or the F2 generation compared to other genes. Nor do we find any evidence that the epigenetic reprogramming of ICRs in the germline is susceptible to nutritional restriction. However, we propose that those imprinted genes that are affected may play important roles in the foetal response to undernutrition and potentially its long-term sequelae. We suggest that recently described instances of dosage regulation by relaxation of imprinting are rare and likely to be highly regulated.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Interacción Gen-Ambiente , Impresión Genómica , Desnutrición , Animales , Desarrollo Embrionario/genética , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Humanos , Hígado/crecimiento & desarrollo , Hígado/metabolismo , Masculino , Desnutrición/genética , Desnutrición/metabolismo , Ratones , Placenta/metabolismo , Placentación , Embarazo
11.
Proc Natl Acad Sci U S A ; 108(28): 11470-5, 2011 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-21709251

RESUMEN

A variety of markers are invaluable for identifying and purifying stem/progenitor cells. Here we report the generation of a murine reporter line driven by Pw1 that reveals cycling and quiescent progenitor/stem cells in all adult tissues thus far examined, including the intestine, blood, testis, central nervous system, bone, skeletal muscle, and skin. Neurospheres generated from the adult PW1-reporter mouse show near 100% reporter-gene expression following a single passage. Furthermore, epidermal stem cells can be purified solely on the basis of reporter-gene expression. These cells are clonogenic, repopulate the epidermal stem-cell niches, and give rise to new hair follicles. Finally, we demonstrate that only PW1 reporter-expressing epidermal cells give rise to follicles that are capable of self-renewal following injury. Our data demonstrate that PW1 serves as an invaluable marker for competent self-renewing stem cells in a wide array of adult tissues, and the PW1-reporter mouse serves as a tool for rapid stem cell isolation and characterization.


Asunto(s)
Células Madre Adultas/citología , Células Madre Adultas/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Animales , Linaje de la Célula/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Células Epidérmicas , Epidermis/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Marcadores Genéticos , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Hibridación in Situ , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Embarazo
12.
Sci Rep ; 12(1): 9250, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35661120

RESUMEN

The epicardium is a reservoir of progenitors that give rise to coronary vasculature and stroma during development and mediates cardiac vascular repair. However, its role as a source of progenitors in the adult mammalian heart remains unclear due to lack of clear lineage markers and single-cell culture systems to elucidate epicardial progeny cell fate. We found that in vivo exposure of mice to physiological hypoxia induced adult epicardial cells to re-enter the cell cycle and to express a subset of developmental genes. Multiplex single cell transcriptional profiling revealed a lineage relationship between epicardial cells and smooth muscle, stromal cells, as well as cells with an endothelial-like fate. We found that physiological hypoxia promoted a perinatal-like progenitor state in the adult murine epicardium. In vitro clonal analyses of purified epicardial cells showed that cell growth and subsequent differentiation is dependent upon hypoxia, and that resident epicardial cells retain progenitor identity in the adult mammalian heart with self-renewal and multilineage differentiation potential. These results point to a source of progenitor cells in the adult heart that can be stimulated in vivo and provide an in vitro model for further studies.


Asunto(s)
Pericardio , Células Madre , Animales , Diferenciación Celular/genética , Proliferación Celular , Hipoxia/metabolismo , Mamíferos , Ratones , Pericardio/metabolismo
13.
J Am Heart Assoc ; 11(7): e023021, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35348002

RESUMEN

Background Platelet-derived growth factor is a major regulator of the vascular remodeling associated with pulmonary arterial hypertension. We previously showed that protein widely 1 (PW1+) vascular progenitor cells participate in early vessel neomuscularization during experimental pulmonary hypertension (PH) and we addressed the role of the platelet-derived growth factor receptor type α (PDGFRα) pathway in progenitor cell-dependent vascular remodeling and in PH development. Methods and Results Remodeled pulmonary arteries from patients with idiopathic pulmonary arterial hypertension showed an increased number of perivascular and vascular PW1+ cells expressing PDGFRα. PW1nLacZ reporter mice were used to follow the fate of pulmonary PW1+ progenitor cells in a model of chronic hypoxia-induced PH development. Under chronic hypoxia, PDGFRα inhibition prevented the increase in PW1+ progenitor cell proliferation and differentiation into vascular smooth muscle cells and reduced pulmonary vessel neomuscularization, but did not prevent an increased right ventricular systolic pressure or the development of right ventricular hypertrophy. Conversely, constitutive PDGFRα activation led to neomuscularization via PW1+ progenitor cell differentiation into new smooth muscle cells and to PH development in male mice without fibrosis. In vitro, PW1+ progenitor cell proliferation, but not differentiation, was dependent on PDGFRα activity. Conclusions These results demonstrate a major role of PDGFRα signaling in progenitor cell-dependent lung vessel neomuscularization and vascular remodeling contributing to PH development, including in idiopathic pulmonary arterial hypertension patients. Our findings suggest that PDGFRα blockers may offer a therapeutic add-on strategy to combine with current pulmonary arterial hypertension treatments to reduce vascular remodeling. Furthermore, our study highlights constitutive PDGFRα activation as a novel experimental PH model.


Asunto(s)
Hipertensión Pulmonar , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas , Animales , Proliferación Celular , Células Cultivadas , Humanos , Hipertensión Pulmonar/metabolismo , Hipoxia , Pulmón , Masculino , Ratones , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Arteria Pulmonar , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Remodelación Vascular
14.
Sci Rep ; 10(1): 11404, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32647159

RESUMEN

There is currently no therapy to limit the development of cardiac fibrosis and consequent heart failure. We have recently shown that cardiac fibrosis post-myocardial infarction (MI) can be regulated by resident cardiac cells with a fibrogenic signature and identified by the expression of PW1 (Peg3). Here we identify αV-integrin (CD51) as an essential regulator of cardiac PW1+ cells fibrogenic behavior. We used transcriptomic and proteomic approaches to identify specific cell-surface markers for cardiac PW1+ cells and found that αV-integrin (CD51) was expressed in almost all cardiac PW1+ cells (93% ± 1%), predominantly as the αVß1 complex. αV-integrin is a subunit member of the integrin family of cell adhesion receptors and was found to activate complex of latent transforming growth factor beta (TGFß at the surface of cardiac PW1+ cells. Pharmacological inhibition of αV-integrin reduced the profibrotic action of cardiac PW1+CD51+ cells and was associated with improved cardiac function and animal survival following MI coupled with a reduced infarct size and fibrotic lesion. These data identify a targetable pathway that regulates cardiac fibrosis in response to an ischemic injury and demonstrate that pharmacological inhibition of αV-integrin could reduce pathological outcomes following cardiac ischemia.


Asunto(s)
Integrina alfaV/efectos de los fármacos , Infarto del Miocardio/tratamiento farmacológico , Venenos de Serpiente/uso terapéutico , Células del Estroma/efectos de los fármacos , Animales , Células Cultivadas , Evaluación Preclínica de Medicamentos , Fibrosis , Integrina alfaV/fisiología , Factores de Transcripción de Tipo Kruppel/análisis , Masculino , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Miocardio/patología , Miocitos Cardíacos/metabolismo , ARN Mensajero/biosíntesis , Análisis de la Célula Individual , Venenos de Serpiente/farmacología , Células del Estroma/química , Factor de Crecimiento Transformador beta1/farmacología
15.
Stem Cells ; 26(4): 997-1008, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18258721

RESUMEN

Skeletal muscle is susceptible to injury following trauma, neurological dysfunction, and genetic diseases. Skeletal muscle homeostasis is maintained by a pronounced regenerative capacity, which includes the recruitment of stem cells. Chronic exposure to tumor necrosis factor-alpha (TNF) triggers a muscle wasting reminiscent of cachexia. To better understand the effects of TNF upon muscle homeostasis and stem cells, we exposed injured muscle to TNF at specific time points during regeneration. TNF exposure delayed the appearance of regenerating fibers, without exacerbating fiber death following the initial trauma. We observed modest cellular caspase activation during regeneration, which was markedly increased in response to TNF exposure concomitant with an inhibition in regeneration. Caspase activation did not lead to apoptosis and did not involve caspase-3. Inhibition of caspase activity improved muscle regeneration in either the absence or the presence of TNF, revealing a nonapoptotic role for this pathway in the myogenic program. Caspase activity was localized to the interstitial cells, which also express Sca-1, CD34, and PW1. Perturbation of PW1 activity blocked caspase activation and improved regeneration. The restricted localization of Sca-1+, CD34+, PW1+ cells to a subset of interstitial cells with caspase activity reveals a critical regulatory role for this population during myogenesis, which may directly contribute to resident muscle stem cells or indirectly regulate stem cells through cell-cell interactions.


Asunto(s)
Caspasas/fisiología , Músculo Esquelético/fisiología , Regeneración/fisiología , Células Madre/fisiología , Factor de Necrosis Tumoral alfa/fisiología , Animales , Femenino , Ratones , Desarrollo de Músculos/fisiología , Músculo Esquelético/citología , Células Madre/citología
16.
F1000Res ; 72018.
Artículo en Inglés | MEDLINE | ID: mdl-30450195

RESUMEN

Embryonic heart progenitors arise at specific spatiotemporal periods that contribute to the formation of distinct cardiac structures. In mammals, the embryonic and fetal heart is hypoxic by comparison to the adult heart. In parallel, the cellular metabolism of the cardiac tissue, including progenitors, undergoes a glycolytic to oxidative switch that contributes to cardiac maturation. While oxidative metabolism is energy efficient, the glycolytic-hypoxic state may serve to maintain cardiac progenitor potential. Consistent with this proposal, the adult epicardium has been shown to contain a reservoir of quiescent cardiac progenitors that are activated in response to heart injury and are hypoxic by comparison to adjacent cardiac tissues. In this review, we discuss the development and potential of the adult epicardium and how this knowledge may provide future therapeutic approaches for cardiac repair.


Asunto(s)
Cardiopatías/terapia , Pericardio/crecimiento & desarrollo , Adulto , Glucólisis , Humanos , Hipoxia , Miocardio/metabolismo , Pericardio/citología , Células Madre/fisiología , Terapéutica/tendencias
17.
Sci Rep ; 8(1): 14649, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30279563

RESUMEN

Pw1/Peg3 is an imprinted gene expressed from the paternally inherited allele. Several imprinted genes, including Pw1/Peg3, have been shown to regulate overall body size and play a role in adult stem cells. Pw1/Peg3 is expressed in muscle stem cells (satellite cells) as well as a progenitor subset of muscle interstitial cells (PICs) in adult skeletal muscle. We therefore examined the impact of loss-of-function of Pw1/Peg3 during skeletal muscle growth and in muscle stem cell behavior. We found that constitutive loss of Pw1/Peg3 function leads to a reduced muscle mass and myofiber number. In newborn mice, the reduction in fiber number is increased in homozygous mutants as compared to the deletion of only the paternal Pw1/Peg3 allele, indicating that the maternal allele is developmentally functional. Constitutive and a satellite cell-specific deletion of Pw1/Peg3, revealed impaired muscle regeneration and a reduced capacity of satellite cells for self-renewal. RNA sequencing analyses revealed a deregulation of genes that control mitochondrial function. Consistent with these observations, Pw1/Peg3 mutant satellite cells displayed increased mitochondrial activity coupled with accelerated proliferation and differentiation. Our data show that Pw1/Peg3 regulates muscle fiber number determination during fetal development in a gene-dosage manner and regulates satellite cell metabolism in the adult.


Asunto(s)
Impresión Genómica , Factores de Transcripción de Tipo Kruppel/fisiología , Desarrollo de Músculos/genética , Fibras Musculares Esqueléticas/fisiología , Regeneración/genética , Animales , Animales Recién Nacidos , Autorrenovación de las Células/genética , Células Cultivadas , Desarrollo Fetal/genética , Dosificación de Gen/fisiología , Masculino , Ratones , Ratones Transgénicos , Modelos Animales , Fibras Musculares Esqueléticas/citología , Células Satélite del Músculo Esquelético/metabolismo
18.
Stem Cell Res ; 32: 8-16, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30149291

RESUMEN

Fibro-adipogenic progenitors (FAPs) are resident mesenchymal progenitors in adult skeletal muscle that support muscle repair, but also give rise to fibrous and adipose infiltration in response to disease and chronic injury. FAPs are identified using cell surface markers that do not distinguish between quiescent FAPs and FAPs actively engaged in the regenerative process. We have shown previously that FAPs are derived from cells that express the transcription factor Osr1 during development. Here we show that adult FAPs express Osr1 at low levels and frequency, however upon acute injury FAPs reactivate Osr1 expression in the injured tissue. Osr1+ FAPs are enriched in proliferating and apoptotic cells demonstrating that Osr1 identifies activated FAPs. In vivo genetic lineage tracing shows that Osr1+ activated FAPs return to the resident FAP pool after regeneration as well as contribute to adipocytes after glycerol-induced fatty degeneration. In conclusion, reporter LacZ or eGFP-CreERt2 expression from the endogenous Osr1 locus serves as marker for FACS isolation and tamoxifen-induced manipulation of activated FAPs.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Músculo Esquelético/metabolismo , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/fisiología , Proteínas de Unión al Calcio , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Células Cultivadas , Quistes , Citometría de Flujo , Edición Génica , Regulación de la Expresión Génica , Glucosidasas/genética , Glucosidasas/metabolismo , Factor Nuclear 4 del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Hepatopatías , Músculo Esquelético/citología , Factores de Transcripción
19.
Front Physiol ; 9: 515, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29881353

RESUMEN

Degenerative myopathies typically display a decline in satellite cells coupled with a replacement of muscle fibers by fat and fibrosis. During this pathological remodeling, satellite cells are present at lower numbers and do not display a proper regenerative function. Whether a decline in satellite cells directly contributes to disease progression or is a secondary result is unknown. In order to dissect these processes, we used a genetic model to reduce the satellite cell population by ~70-80% which leads to a nearly complete loss of regenerative potential. We observe that while no overt tissue damage is observed following satellite cell depletion, muscle fibers atrophy accompanied by changes in the stem cell niche cellular composition. Treatment of these mice with an Activin receptor type-2B (AcvR2B) pathway blocker reverses muscle fiber atrophy as expected, but also restores regenerative potential of the remaining satellite cells. These findings demonstrate that in addition to controlling fiber size, the AcvR2B pathway acts to regulate the muscle stem cell niche providing a more favorable environment for muscle regeneration.

20.
Mol Cell Biol ; 23(10): 3623-35, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12724420

RESUMEN

As revealed by intracellular pools of nonactive Fas (Apo-1), export of Fas to the cell surface is often impaired in human tumors, thereby inactivating Fas ligand-mediated apoptosis. Here, we demonstrate that association with Fas-associated phosphatase 1 (FAP-1) attenuates Fas export to the cell surface. Forced expression of FAP-1 reduces cell surface Fas levels and increases the intracellular pool of Fas within the cytoskeleton network. Conversely, expression of dominant-negative forms of FAP-1, or inhibition of FAP-1 expression by short interfering RNA, efficiently up-regulates surface expression of Fas. Inhibition of Fas surface expression by FAP-1 depends on its association with the C terminus of Fas. Mutation within amino acid 275 results in decreased association with FAP-1 and greater export of Fas to the cell surface in melanomas, normal fibroblasts, or Fas null cells. Identifying the role of FAP-1 in binding to, and consequently inhibition of, Fas export to the cell surface provides novel insight into the mechanism underlying the regulation of Fas trafficking, which is commonly impaired in advanced tumors with FAP-1 overexpression.


Asunto(s)
Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Receptor fas/metabolismo , Animales , Apoptosis , Western Blotting , Muerte Celular , Separación Celular , Fibroblastos/metabolismo , Citometría de Flujo , Genes Dominantes , Aparato de Golgi/metabolismo , Proteínas Fluorescentes Verdes , Humanos , Inmunohistoquímica , Ligandos , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Noqueados , Microscopía Fluorescente , Mutación , Fosforilación , Plásmidos/metabolismo , Pruebas de Precipitina , Unión Proteica , Proteína Fosfatasa 1 , Estructura Terciaria de Proteína , Proteína Tirosina Fosfatasa no Receptora Tipo 13 , ARN/metabolismo , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Factores de Tiempo , Transfección , Células Tumorales Cultivadas , Regulación hacia Arriba , beta-Galactosidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA