Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Org Chem ; 84(7): 4149-4164, 2019 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-30888169

RESUMEN

An oxidative procedure for the electrophilic iodination of phenols was developed by using iodosylbenzene as a nontoxic iodine(III)-based oxidant and ammonium iodide as a cheap iodine atom source. A totally controlled monoiodination was achieved by buffering the reaction medium with K3PO4. This protocol proceeds with short reaction times, at mild temperatures, in an open flask, and generally with high yields. Gram-scale reactions, as well as the scope of this protocol, were explored with electron-rich and electron-poor phenols as well as heterocycles. Quantum chemistry calculations revealed PhII(OH)·NH3 to be the most plausible iodinating active species as a reactive "I+" synthon. In light of the relevance of the iodoarene moiety, we present herein a practical, efficient, and simple procedure with a broad functional group scope that allows access to the iodoarene core unit.

2.
Front Chem ; 8: 563470, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33195052

RESUMEN

The chemoselective reaction of the C- followed by the O-centered naphthyl radicals with the more electron-deficient hypervalent bond of the diaryliodonium(III) salts is described. This discovered reactivity constitutes a new activation mode of the diaryliodonium(III) salts which enabled a one-pot doubly arylation of naphthols through the sequential C s p 2 - C s p 2 /O- C s p 2 bond formation. The naphthyl radicals were generated in the reaction by the tetramethylpiperidinyl radical (TMP·) which resulted from the homolytic fragmentation of the precursor TMP2O. Experimental and DFT calculations provided a complete panorama of the reaction mechanism.

3.
RSC Adv ; 8(32): 17806-17812, 2018 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-35542081

RESUMEN

A practical electrophilic bromination procedure for phenols and phenol-ethers was developed under efficient and very mild reaction conditions. A broad scope of arenes was investigated, including the benzimidazole and carbazole core as well as analgesics such as naproxen and paracetamol. The new I(iii)-based brominating reagent PhIOAcBr is operationally easy to prepare by mixing PIDA and AlBr3. Our DFT calculations suggest that this is likely the brominating active species, which is prepared in situ or isolated after centrifugation. Its stability at 4 °C after preparation was confirmed over a period of one month and no significant loss of its reactivity was observed. Additionally, the gram-scale bromination of 2-naphthol proceeds with excellent yields. Even for sterically hindered substrates, a moderately good reactivity is observed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA