Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Plant Biotechnol J ; 22(4): 946-959, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37988568

RESUMEN

Maize grain is deficient in lysine. While the opaque2 mutation increases grain lysine, o2 is a transcription factor that regulates a wide network of genes beyond zeins, which leads to pleiotropic and often negative effects. Additionally, the drastic reduction in 19 kDa and 22 kDa alpha-zeins causes a floury kernel, unsuitable for agricultural use. Quality protein maize (QPM) overcame the undesirable kernel texture through the introgression of modifying alleles. However, QPM still lacks a functional o2 transcription factor, which has a penalty on non-lysine amino acids due to the o2 mutation. CRISPR/cas9 gives researchers the ability to directly target genes of interest. In this paper, gene editing was used to specifically target the 19 kDa alpha zein gene family. This allows for proteome rebalancing to occur without an o2 mutation and without a total alpha-zein knockout. The results showed that editing some, but not all, of the 19 kDa zeins resulted in up to 30% more lysine. An edited line displayed an increase of 30% over the wild type. While not quite the 55% lysine increase displayed by QPM, the line had little collateral impact on other amino acid levels compared to QPM. Additionally, the edited line containing a partially reduced 19 kDa showed an advantage in kernel texture that had a complete 19 kDa knockout. These results serve as proof of concept that editing the 19 kDa alpha-zein family alone can enhance lysine while retaining vitreous endosperm and a functional O2 transcription factor.


Asunto(s)
Lisina , Zeína , Lisina/metabolismo , Zea mays/genética , Zea mays/metabolismo , Zeína/química , Endospermo/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Aminoácidos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Mol Plant Microbe Interact ; 33(1): 108-122, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31687913

RESUMEN

Wheat streak mosaic virus (WSMV) and triticum mosaic virus (TriMV) are economically important viruses of wheat (Triticum aestivum L.), causing significant yield losses in the Great Plains region of the United States. These two viruses are transmitted by wheat curl mites, which often leads to mixed infections with synergistic interaction in grower fields that exacerbates yield losses. Development of dual-resistant wheat lines would provide effective control of these two viruses. In this study, a genetic resistance strategy employing an RNA interference (RNAi) approach was implemented by assembling a hairpin element composed of a 202-bp (404-bp in total) stem sequence of the NIb (replicase) gene from each of WSMV and TriMV in tandem and of an intron sequence in the loop. The derived RNAi element was cloned into a binary vector and was used to transform spring wheat genotype CB037. Phenotyping of T1 lineages across eight independent transgenic events for resistance revealed that i) two of the transgenic events provided resistance to WSMV and TriMV, ii) four events provided resistance to either WSMV or TriMV, and iii) no resistance was found in two other events. T2 populations derived from the two events classified as dual-resistant were subsequently monitored for stability of the resistance phenotype through the T4 generation. The resistance phenotype in these events was temperature-dependent, with a complete dual resistance at temperatures ≥25°C and an increasingly susceptible response at temperatures below 25°C. Northern blot hybridization of total RNA from transgenic wheat revealed that virus-specific small RNAs (vsRNAs) accumulated progressively with an increase in temperature, with no detectable levels of vsRNA accumulation at 20°C. Thus, the resistance phenotype of wheat harboring an RNAi element was correlated with accumulation of vsRNAs, and the generation of vsRNAs can be used as a molecular marker for the prediction of resistant phenotypes of transgenic plants at a specific temperature.


Asunto(s)
Resistencia a la Enfermedad , Plantas Modificadas Genéticamente , Triticum , Resistencia a la Enfermedad/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/virología , Potyviridae/fisiología , Interferencia de ARN , Triticum/genética , Triticum/virología
3.
Plant Mol Biol ; 103(3): 269-285, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32170550

RESUMEN

Ferulate 5-hydroxylase (F5H) of the monolignol pathway catalyzes the hydroxylation of coniferyl alcohol, coniferaldehyde and ferulic acid to produce 5-hydroxyconiferyl moieties, which lead to the formation of sinapic acid and syringyl (S) lignin monomers. In contrast, guaiacyl (G) lignin, the other major type of lignin monomer, is derived from polymerization of coniferyl alcohol. In this study, the effects of manipulating S-lignin biosynthesis in sorghum (Sorghum bicolor) were evaluated. Overexpression of sorghum F5H (SbF5H), under the control of the CaMV 35S promoter, increased both S-lignin levels and the ratio of S/G lignin, while plant growth and development remained relatively unaffected. Maüle staining of stalk and leaf midrib sections from SbF5H overexpression lines indicated that the lignin composition was altered. Ectopic expression of SbF5H did not affect the gene expression of other monolignol pathway genes. In addition, brown midrib 12-ref (bmr12-ref), a nonsense mutation in the sorghum caffeic acid O-methyltransferase (COMT) was combined with 35S::SbF5H through cross-pollination to examine effects on lignin synthesis. The stover composition from bmr12 35S::SbF5H plants more closely resembled bmr12 stover than 35S::SbF5H or wild-type (WT) stover; S-lignin and total lignin concentrations were decreased relative to WT or 35S::SbF5H. Likewise, expression of upstream monolignol biosynthetic genes was increased in both bmr12 and bmr12 35S::SbF5H relative to WT or 35S::SbF5H. Overall, these results indicated that overexpression of SbF5H did not compensate for the loss of COMT activity. KEY MESSAGE: Overexpression of F5H in sorghum increases S-lignin without increasing total lignin content or affecting plant growth, but it cannot compensate for the loss of COMT activity in monolignol synthesis.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Plantas/metabolismo , Sorghum/enzimología , Sistema Enzimático del Citocromo P-450/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Sorghum/genética , Sorghum/metabolismo
4.
Plant Biotechnol J ; 18(9): 1955-1968, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32031318

RESUMEN

Drought stress is the major limiting factor in agriculture. Wheat, which is the most widely grown crop in the world, is predominantly cultivated in drought-prone rainfed environments. Since roots play a critical role in water uptake, root response to water limitations is an important component for enhancing wheat adaptation. In an effort to discover novel genetic sources for improving wheat adaptation, we characterized a wheat translocation line with a chromosomal segment from Agropyron elongatum, a wild relative of wheat, which unlike common wheat maintains root growth under limited-water conditions. By exploring the root transcriptome data, we found that reduced transcript level of LATERAL ROOT DENSITY (LRD) gene under limited water in the Agropyron translocation line confers it the ability to maintain root growth. The Agropyron allele of LRD is down-regulated in response to water limitation in contrast with the wheat LRD allele, which is up-regulated by water deficit stress. Suppression of LRD expression in wheat RNAi plants confers the ability to maintain root growth under water limitation. We show that exogenous gibberellic acid (GA) promotes lateral root growth and present evidence for the role of GA in mediating the differential regulation of LRD between the common wheat and the Agropyron alleles under water stress. Suppression of LRD also had a positive pleiotropic effect on grain size and number under optimal growth conditions. Collectively, our findings suggest that LRD can be potentially useful for improving wheat response to water stress and altering yield components.


Asunto(s)
Agropyron , Triticum , Agropyron/genética , Deshidratación , Sequías , Genes de Plantas , Humanos , Triticum/genética , Agua
5.
Plant Biotechnol J ; 17(2): 373-385, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29979490

RESUMEN

Triterpenes are thirty-carbon compounds derived from the universal five-carbon prenyl precursors isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Normally, triterpenes are synthesized via the mevalonate (MVA) pathway operating in the cytoplasm of eukaryotes where DMAPP is condensed with two IPPs to yield farnesyl diphosphate (FPP), catalyzed by FPP synthase (FPS). Squalene synthase (SQS) condenses two molecules of FPP to generate the symmetrical product squalene, the first committed precursor to sterols and most other triterpenes. In the green algae Botryococcus braunii, two FPP molecules can also be condensed in an asymmetric manner yielding the more highly branched triterpene, botryococcene. Botryococcene is an attractive molecule because of its potential as a biofuel and petrochemical feedstock. Because B. braunii, the only native host for botryococcene biosynthesis, is difficult to grow, there have been efforts to move botryococcene biosynthesis into organisms more amenable to large-scale production. Here, we report the genetic engineering of the model monocot, Brachypodium distachyon, for botryococcene biosynthesis and accumulation. A subcellular targeting strategy was used, directing the enzymes (botryococcene synthase [BS] and FPS) to either the cytosol or the plastid. High titres of botryococcene (>1 mg/g FW in T0 mature plants) were obtained using the cytosolic-targeting strategy. Plastid-targeted BS + FPS lines accumulated botryococcene (albeit in lesser amounts than the cytosolic BS + FPS lines), but they showed a detrimental phenotype dependent on plastid-targeted FPS, and could not proliferate and survive to set seed under phototrophic conditions. These results highlight intriguing differences in isoprenoid metabolism between dicots and monocots.


Asunto(s)
Brachypodium/genética , Proteínas de Plantas/metabolismo , Sorghum/genética , Escualeno/metabolismo , Triterpenos/metabolismo , Brachypodium/metabolismo , Chlorophyta/genética , Chlorophyta/metabolismo , Citosol/metabolismo , Farnesil Difosfato Farnesil Transferasa/genética , Farnesil Difosfato Farnesil Transferasa/metabolismo , Ingeniería Genética , Geraniltranstransferasa/genética , Geraniltranstransferasa/metabolismo , Proteínas de Plantas/genética , Plastidios/metabolismo , Sorghum/metabolismo
6.
Plant Physiol ; 177(4): 1425-1438, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29925584

RESUMEN

Kafirins are the major storage proteins in sorghum (Sorghum bicolor) grains and form protein bodies with poor digestibility. Since kafirins are devoid of the essential amino acid lysine, they also impart poor protein quality to the kernel. The α-kafirins, which make up most of the total kafirins, are largely encoded by the k1C family of highly similar genes. We used a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene editing approach to target the k1C genes to create variants with reduced kafirin levels and improved protein quality and digestibility. A single guide RNA was designed to introduce mutations in a conserved region encoding the endoplasmic reticulum signal peptide of α-kafirins. Sequencing of kafirin PCR products revealed extensive edits in 25 of 26 events in one or multiple k1C family members. T1 and T2 seeds showed reduced α-kafirin levels, and selected T2 events showed significantly increased grain protein digestibility and lysine content. Thus, a single consensus single guide RNA carrying target sequence mismatches is sufficient for extensive editing of all k1C genes. The resulting quality improvements can be deployed rapidly for breeding and the generation of transgene-free, improved cultivars of sorghum, a major crop worldwide.


Asunto(s)
Edición Génica/métodos , Proteínas de Plantas/genética , Sorghum/genética , Sistemas CRISPR-Cas , Digestión , Lisina , Familia de Multigenes , Tasa de Mutación , Proteínas de Plantas/farmacocinética , Proteínas de Vegetales Comestibles/genética , Proteínas de Vegetales Comestibles/farmacocinética , Plantas Modificadas Genéticamente , ARN Guía de Kinetoplastida , Semillas/genética , Semillas/metabolismo , Sorghum/metabolismo
7.
J Exp Bot ; 70(15): 3825-3833, 2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31037287

RESUMEN

Transgenic technology was developed to introduce transgenes into various organisms to validate gene function and add genetic variations >40 years ago. However, the identification of the transgene insertion position is still challenging in organisms with complex genomes. Here, we report a nanopore-based method to map the insertion position of a Ds transposable element originating in maize in the soybean genome. In this method, an oligo probe is used to capture the DNA fragments containing the Ds element from pooled DNA samples of transgenic soybean plants. The Ds element-enriched DNAs are then sequenced using the MinION-based platform of Nanopore. This method allowed us to rapidly map the Ds insertion positions in 51 transgenic soybean lines through a single sequencing run. This strategy is high throughput, convenient, reliable, and cost-efficient. The transgenic allele mapping protocol can be easily translated to other eukaryotes with complex genomes.


Asunto(s)
Glycine max/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Alelos , Biología Computacional , Elementos Transponibles de ADN/genética , Elementos Transponibles de ADN/fisiología , Secuenciación de Nucleótidos de Alto Rendimiento , Nanoporos , Plantas Modificadas Genéticamente/genética , Análisis de Secuencia de ADN , Glycine max/genética
8.
Planta ; 246(6): 1097-1107, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28801748

RESUMEN

MAIN CONCLUSION: The expression of a barley alanine aminotransferase gene impacts agronomic outcomes in a C3 crop, wheat. The use of nitrogen-based fertilizers has become one of the major agronomic inputs in crop production systems. Strategies to enhance nitrogen assimilation and flux in planta are being pursued through the introduction of novel genetic alleles. Here an Agrobacterium-mediated approach was employed to introduce the alanine aminotransferase from barley (Hordeum vulgare), HvAlaAT, into wheat (Triticum aestivum) and sorghum (Sorghum bicolor), regulated by either constitutive or root preferred promoter elements. Plants harboring the transgenic HvAlaAT alleles displayed increased alanine aminotransferase (alt) activity. The enhanced alt activity impacted height, tillering and significantly boosted vegetative biomass relative to controls in wheat evaluated under hydroponic conditions, where the phenotypic outcome across these parameters varied relative to time of year study was conducted. Constitutive expression of HvAlaAT translated to elevation in wheat grain yield under field conditions. In sorghum, expression of HvAlaAT enhanced enzymatic activity, but no changes in phenotypic outcomes were observed. Taken together these results suggest that positive agronomic outcomes can be achieved through enhanced alt activity in a C3 crop, wheat. However, the variability observed across experiments under greenhouse conditions implies the phenotypic outcomes imparted by the HvAlaAT allele in wheat may be impacted by environment.


Asunto(s)
Alanina Transaminasa/metabolismo , Hordeum/enzimología , Nitrógeno/metabolismo , Sorghum/fisiología , Triticum/enzimología , Agrobacterium/fisiología , Alanina Transaminasa/genética , Grano Comestible/enzimología , Grano Comestible/genética , Grano Comestible/fisiología , Hordeum/genética , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Sorghum/genética , Transgenes , Triticum/genética , Triticum/fisiología
9.
Plant Physiol ; 172(3): 1506-1518, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27660165

RESUMEN

Soybean (Glycine max) is a major plant source of protein and oil and produces important secondary metabolites beneficial for human health. As a tool for gene function discovery and improvement of this important crop, a mutant population was generated using fast neutron irradiation. Visual screening of mutagenized seeds identified a mutant line, designated MO12, which produced brown seeds as opposed to the yellow seeds produced by the unmodified Williams 82 parental cultivar. Using forward genetic methods combined with comparative genome hybridization analysis, we were able to establish that deletion of the GmHGO1 gene is the genetic basis of the brown seeded phenotype exhibited by the MO12 mutant line. GmHGO1 encodes a homogentisate dioxygenase (HGO), which catalyzes the committed enzymatic step in homogentisate catabolism. This report describes to our knowledge the first functional characterization of a plant HGO gene, defects of which are linked to the human genetic disease alkaptonuria. We show that reduced homogentisate catabolism in a soybean HGO mutant is an effective strategy for enhancing the production of lipid-soluble antioxidants such as vitamin E, as well as tolerance to herbicides that target pathways associated with homogentisate metabolism. Furthermore, this work demonstrates the utility of fast neutron mutagenesis in identifying novel genes that contribute to soybean agronomic traits.


Asunto(s)
Biofortificación , Glycine max/enzimología , Homogentisato 1,2-Dioxigenasa/metabolismo , Aceites de Plantas/metabolismo , Semillas/enzimología , Vitamina E/metabolismo , 4-Hidroxifenilpiruvato Dioxigenasa/antagonistas & inhibidores , 4-Hidroxifenilpiruvato Dioxigenasa/metabolismo , Adaptación Fisiológica/efectos de los fármacos , Arabidopsis/genética , Inhibidores Enzimáticos/toxicidad , Eliminación de Gen , Genoma de Planta , Herbicidas/toxicidad , Ácido Homogentísico/metabolismo , Isoenzimas/metabolismo , Redes y Vías Metabólicas/efectos de los fármacos , Mutación/genética , Fenotipo , Células Vegetales/efectos de los fármacos , Células Vegetales/metabolismo , Glycine max/efectos de los fármacos , Glycine max/fisiología
10.
Plant Physiol ; 162(3): 1359-69, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23677936

RESUMEN

Zeins, the maize (Zea mays) prolamin storage proteins, accumulate at very high levels in developing endosperm in endoplasmic reticulum membrane-bound protein bodies. Products of the multigene α-zein families and the single-gene γ-zein family are arranged in the central hydrophobic core and the cross-linked protein body periphery, respectively, but little is known of the specific roles of family members in protein body formation. Here, we used RNA interference suppression of different zein subclasses to abolish vitreous endosperm formation through a variety of effects on protein body density, size, and morphology. We showed that the 27-kilodalton (kD) γ-zein controls protein body initiation but is not involved in protein body filling. Conversely, other γ-zein family members function more in protein body expansion and not in protein body initiation. Reduction in both 19- and 22-kD α-zein subfamilies severely restricted protein body expansion but did not induce morphological abnormalities, which result from reduction of only the 22-kD α-zein class. Concomitant reduction of all zein classes resulted in severe reduction in protein body number but normal protein body size and morphology.


Asunto(s)
Endospermo/metabolismo , Proteínas de Plantas/metabolismo , Zea mays/metabolismo , Zeína/metabolismo , Endospermo/genética , Endospermo/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Familia de Multigenes , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Interferencia de ARN , Zea mays/genética
11.
Plant Cell ; 23(9): 3428-41, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21934144

RESUMEN

Mitochondrial-plastid interdependence within the plant cell is presumed to be essential, but measurable demonstration of this intimate interaction is difficult. At the level of cellular metabolism, several biosynthetic pathways involve both mitochondrial- and plastid-localized steps. However, at an environmental response level, it is not clear how the two organelles intersect in programmed cellular responses. Here, we provide evidence, using genetic perturbation of the MutS Homolog1 (MSH1) nuclear gene in five plant species, that MSH1 functions within the mitochondrion and plastid to influence organellar genome behavior and plant growth patterns. The mitochondrial form of the protein participates in DNA recombination surveillance, with disruption of the gene resulting in enhanced mitochondrial genome recombination at numerous repeated sequences. The plastid-localized form of the protein interacts with the plastid genome and influences genome stability and plastid development, with its disruption leading to variegation of the plant. These developmental changes include altered patterns of nuclear gene expression. Consistency of plastid and mitochondrial response across both monocot and dicot species indicate that the dual-functioning nature of MSH1 is well conserved. Variegated tissues show changes in redox status together with enhanced plant survival and reproduction under photooxidative light conditions, evidence that the plastid changes triggered in this study comprise an adaptive response to naturally occurring light stress.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Luz , Magnoliopsida/efectos de la radiación , Mitocondrias/metabolismo , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/metabolismo , Estrés Oxidativo , ADN de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Genoma del Cloroplasto , Genoma Mitocondrial , Inestabilidad Genómica , Magnoliopsida/genética , Magnoliopsida/fisiología , Análisis de Secuencia por Matrices de Oligonucleótidos , Oxidación-Reducción , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/fisiología , Plantas Modificadas Genéticamente/efectos de la radiación , Quinonas/análisis , Recombinación Genética
12.
Plant Physiol ; 160(1): 419-32, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22744982

RESUMEN

In maize (Zea mays), Rubisco accumulates in bundle sheath but not mesophyll chloroplasts, but the mechanisms that underlie cell type-specific expression are poorly understood. To explore the coordinated expression of the chloroplast rbcL gene, which encodes the Rubisco large subunit (LS), and the two nuclear RBCS genes, which encode the small subunit (SS), RNA interference was used to reduce RBCS expression. This resulted in Rubisco deficiency and was correlated with translational repression of rbcL. Thus, as in C3 plants, LS synthesis depends on the presence of its assembly partner SS. To test the hypothesis that the previously documented transcriptional repression of RBCS in mesophyll cells is responsible for repressing LS synthesis in mesophyll chloroplasts, a ubiquitin promoter-driven RBCS gene was expressed in both bundle sheath and mesophyll cells. This did not lead to Rubisco accumulation in the mesophyll, suggesting that LS synthesis is impeded even in the presence of ectopic SS expression. To attempt to bypass this putative mechanism, a ubiquitin promoter-driven nuclear version of the rbcL gene was created, encoding an epitope-tagged LS that was expressed in the presence or absence of the Ubi-RBCS construct. Both transgenes were robustly expressed, and the tagged LS was readily incorporated into Rubisco complexes. However, neither immunolocalization nor biochemical approaches revealed significant accumulation of Rubisco in mesophyll cells, suggesting a continuing cell type-specific impairment of its assembly or stability. We conclude that additional cell type-specific factors limit Rubisco expression to bundle sheath chloroplasts.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Células del Mesófilo/enzimología , Ribulosa-Bifosfato Carboxilasa/metabolismo , Zea mays/enzimología , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cloroplastos/enzimología , Cloroplastos/genética , Estabilidad de Enzimas , Epítopos/genética , Epítopos/metabolismo , Genes de Plantas , Células del Mesófilo/citología , Modelos Biológicos , Mutagénesis Sitio-Dirigida , Fotosíntesis , Haz Vascular de Plantas/citología , Haz Vascular de Plantas/enzimología , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Regiones Promotoras Genéticas , Interferencia de ARN , ARN de Planta/genética , ARN de Planta/metabolismo , Ribulosa-Bifosfato Carboxilasa/genética , Transcripción Genética , Transgenes , Zea mays/genética
13.
Methods Mol Biol ; 2653: 273-285, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36995632

RESUMEN

Cas9-based genome editing is a powerful genetic tool for loci specifically targeted for genome modification. This chapter describes up-to-date protocols using Cas9-based genome editing technology, including vector construction with GoldenBraid assembly, Agrobacterium-mediated soybean transformation, and identification of editing in the genome.


Asunto(s)
Edición Génica , Glycine max , Edición Génica/métodos , Glycine max/genética , Sistemas CRISPR-Cas/genética , Alelos , Genotipo
14.
Front Plant Sci ; 14: 1116886, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36998682

RESUMEN

Introduction: Sorghum is a resilient and widely cultivated grain crop used for feed and food. However, it's grain is deficient in lysine, an essential amino acid. This is due to the primary seed storage proteins, the alpha-kafirins, lacking lysine. It has been observed that reductions in alpha-kafirin protein results in rebalancing of the seed proteome and a corresponding increase in non-kafirin proteins which leads to an increased lysine content. However, the mechanisms underlying proteome rebalancing are unclear. This study characterizes a previously developed gene edited sorghum line, with deletions at the alpha kafirin locus. Methods: A single consensus guide RNA leads to tandem deletion of multiple members of the gene family in addition to the small target site mutations in remaining genes. RNA-seq and ATAC-seq were utilized to identify changes in gene expression and chromatin accessibility in developing kernels in the absence of most alpha-kafirin expression. Results: Several differentially accessible chromatin regions and differentially expressed genes were identified. Additionally, several genes upregulated in the edited sorghum line were common with their syntenic orthologues differentially expressed in maize prolamin mutants. ATAC-seq showed enrichment of the binding motif for ZmOPAQUE 11, perhaps indicating the transcription factor's involvement in the kernel response to reduced prolamins. Discussion: Overall, this study provides a resource of genes and chromosomal regions which may be involved in sorghum's response to reduced seed storage proteins and the process of proteome rebalancing.

15.
Plant Biotechnol J ; 10(5): 533-44, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22353344

RESUMEN

Sorghum prolamins, termed kafirins, are categorized into subgroups α, ß, and γ. The kafirins are co-translationally translocated to the endoplasmic reticulum (ER) where they are assembled into discrete protein bodies that tend to be poorly digestible with low functionality in food and feed applications. As a means to address the issues surrounding functionality and digestibility in sorghum, we employed a biotechnology approach that is designed to alter protein body structure, with the concomitant synthesis of a co-protein in the endosperm fraction of the grain. Wherein perturbation of protein body architecture may provide a route to impact digestibility by reducing disulphide bonds about the periphery of the body, while synthesis of a co-protein, with known functionality attributes, theoretically could impact structure of the protein body through direct association and/or augment end-use applications of sorghum flour by stabilizing ß-sheet formation of the kafirins in sorghum dough preparations. This in turn may improve viscoelasticity of sorghum dough. To this end, we report here on the molecular and phenotypic characterizations of transgenic sorghum events that are down-regulated in γ- and the 29-kDa α-kafirins and the expression of a wheat Dy10/Dx 5 hybrid high-molecular weight glutenin protein. The results demonstrate that down-regulation of γ-kafirin alone does not alter protein body formation or impacts protein digestibility of cooked flour samples. However, reduction in accumulation of a predicted 29-kDa α-kafirin alters the morphology of protein body and enhances protein digestibility in both raw and cooked samples.


Asunto(s)
Proteínas de Plantas/metabolismo , Semillas/metabolismo , Sorghum/genética , Culinaria , Regulación hacia Abajo , Endospermo/genética , Endospermo/metabolismo , Regulación de la Expresión Génica de las Plantas , Genotipo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Proteínas de Almacenamiento de Semillas/genética , Semillas/genética , Sorghum/metabolismo
16.
Phytochemistry ; 200: 113206, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35436478

RESUMEN

Cannabis sativa is a versatile crop that can be cultivated for fiber, seed, or phytochemicals. To take advantage of this versatility and the potential of Cannabis as a feedstock for the bioeconomy, genomics-enabled breeding programs must be strengthened and expanded. This work contributes to the foundation for such by investigating the phytochemistry and genomics of feral Cannabis populations collected from seventeen counties across the climate gradient of Nebraska. Flower tissue from male and female plants (28 total) was studied using (i) gas chromatography-mass spectrometry to assess cannabinoid profiles and (ii) RNA sequencing to determine transcript abundances. Both male and female flower tissues produced cannabinoids, and, though the compounds were more abundant in female flower tissue, the primary cannabinoid in both was usually cannabidiol. The expression of genes that mediate early steps on the cannabinoid biosynthetic pathway were upregulated in female relative to male flowers, suggesting that female versus male flower tissue cannabinoid abundance may be controlled at least in part at the transcriptional level. DNA sequencing was used to place feral Cannabis plants from Nebraska into a previously described genomic context, revealing that all the plants studied here are much more similar to previously characterized hemp-type Cannabis plants than to drug-type Cannabis plants, at least at the genetic level. This work provides foundational phytochemical knowledge and a large set of high-quality single nucleotide polymorphism markers for future studies of feral Nebraska Cannabis.


Asunto(s)
Cannabinoides , Cannabis , Alucinógenos , Cannabinoides/análisis , Cannabinoides/química , Cannabis/química , Cannabis/genética , Variación Genética , Nebraska , Fitoquímicos/análisis , Fitomejoramiento
17.
Plant Mol Biol ; 75(4-5): 467-79, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21318369

RESUMEN

Sorghum (Sorghum bicolor (L.) Moench) is an important source for food, feed, and possesses many agronomic attributes attractive for a biofuels feedstock. A warm season crop originating from the semi-arid tropics, sorghum is relatively susceptible to both cold and freezing stress. Enhancing the ability of sorghum to tolerate cold and freezing offers a route to expand the acreage for production, and provides a potential drought avoidance strategy during flowering, an important parameter for protection of yield. Targeted perturbation of the signal transduction pathway, that is triggered by exposure to abiotic stress in plants, has been demonstrated in model systems as an avenue to augment tolerance. Calcium-dependent protein kinases (CDPKs) are key players in a plant's response to environmental assaults. To test the impact of modulating CDPK activity in sorghum as a means to enhanced abiotic stress tolerance, we introduced a constitutively expressed rice CDPK-7 (OsCDPK-7) gene construct. Sorghum transformants carrying this cassette, were not improved in cold or salt stress under the conditions tested. However, a lesion mimic phenotype and up-regulation of a number of pathogen related proteins, along with transcripts linked to photosynthesis were observed. These results demonstrate that modulating the Ca signaling cascade in planta via unregulated enhanced CDPK activity can lead to off-type effects likely due to the broadly integrated nature of these enzymes in signaling.


Asunto(s)
Oryza/enzimología , Oryza/genética , Proteínas Quinasas/genética , Sorghum/enzimología , Sorghum/genética , Aclimatación/genética , Aclimatación/fisiología , Secuencia de Aminoácidos , Secuencia de Bases , Señalización del Calcio , Clima Frío , ADN de Plantas/genética , Expresión Génica , Genes de Plantas , Datos de Secuencia Molecular , Fenotipo , Plantas Modificadas Genéticamente , Proteínas Quinasas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Estrés Fisiológico , Transformación Genética
18.
Phytopathology ; 101(11): 1264-9, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21999157

RESUMEN

Transgenic plants expressing double-stranded RNA (dsRNA) of virus origin have been previously shown to confer resistance to virus infections through the highly conserved RNA-targeting process termed RNA silencing or RNA interference (RNAi). In this study we applied this strategy to soybean plants and achieved robust resistance to multiple viruses with a single dsRNA-expressing transgene. Unlike previous reports that relied on the expression of one long inverted repeat (IR) combining sequences of several viruses, our improved strategy utilized a transgene designed to express several shorter IRs. Each of these short IRs contains highly conserved sequences of one virus, forming dsRNA of less than 150 bp. These short dsRNA stems were interspersed with single-stranded sequences to prevent homologous recombination during the transgene assembly process. Three such short IRs with sequences of unrelated soybean-infecting viruses (Alfalfa mosaic virus, Bean pod mottle virus, and Soybean mosaic virus) were assembled into a single transgene under control of the 35S promoter and terminator of Cauliflower mosaic virus. Three independent transgenic lines were obtained and all of them exhibited strong systemic resistance to the simultaneous infection of the three viruses. These results demonstrate the effectiveness of this very straight forward strategy for engineering RNAi-based virus resistance in a major crop plant. More importantly, our strategy of construct assembly makes it easy to incorporate additional short IRs in the transgene, thus expanding the spectrum of virus resistance. Finally, this strategy could be easily adapted to control virus problems of other crop plants.


Asunto(s)
Virus del Mosaico de la Alfalfa/genética , Comovirus/genética , Glycine max/inmunología , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/genética , Potyvirus/inmunología , Virus del Mosaico de la Alfalfa/aislamiento & purificación , Coinfección , Comovirus/aislamiento & purificación , ADN Complementario/genética , Genotipo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/virología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/inmunología , Plantas Modificadas Genéticamente/virología , Potyvirus/genética , Potyvirus/aislamiento & purificación , Interferencia de ARN , ARN Bicatenario/genética , ARN de Planta/genética , ARN Interferente Pequeño/genética , ARN Viral/genética , Semillas/crecimiento & desarrollo , Semillas/virología , Glycine max/genética , Glycine max/crecimiento & desarrollo , Glycine max/virología , Transgenes/genética
19.
Plant Biotechnol J ; 8(2): 112-25, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20051034

RESUMEN

Plastid number and morphology vary dramatically between cell types and at different developmental stages. Furthermore, in C4 plants such as maize, chloroplast ultrastructure and biochemical functions are specialized in mesophyll and bundle sheath cells, which differentiate acropetally from the proplastid form in the leaf base. To develop visible markers for maize plastids, we have created a series of stable transgenics expressing fluorescent proteins fused to either the maize ubiquitin promoter, the mesophyll-specific phosphoenolpyruvate carboxylase (PepC) promoter, or the bundle sheath-specific Rubisco small subunit 1 (RbcS) promoter. Multiple independent events were examined and revealed that maize codon-optimized versions of YFP and GFP were particularly well expressed, and that expression was stably inherited. Plants carrying PepC promoter constructs exhibit YFP expression in mesophyll plastids and the RbcS promoter mediated expression in bundle sheath plastids. The PepC and RbcS promoter fusions also proved useful for identifying plastids in organs such as epidermis, silks, roots and trichomes. These tools will inform future plastid-related studies of wild-type and mutant maize plants and provide material from which different plastid types may be isolated.


Asunto(s)
Proteínas Luminiscentes/genética , Plastidios/genética , Ribulosa-Bifosfato Carboxilasa/genética , Zea mays/genética , Regulación de la Expresión Génica de las Plantas , Microscopía Confocal , Datos de Secuencia Molecular , Fosfoenolpiruvato Carboxilasa/genética , Plantas Modificadas Genéticamente/genética , Regiones Promotoras Genéticas
20.
Genes (Basel) ; 10(8)2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31349565

RESUMEN

Solanaceae have played an important role in elucidating how flower color is specified by the flavonoid biosynthesis pathway (FBP), which produces anthocyanins and other secondary metabolites. With well-established reverse genetics tools and rich genomic resources, Solanaceae provide a robust framework to examine the diversification of this well-studied pathway over short evolutionary timescales and to evaluate the predictability of genetic perturbation on pathway flux. Genomes of eight Solanaceae species, nine related asterids, and four rosids were mined to evaluate variation in copy number of the suite of FBP enzymes involved in anthocyanin biosynthesis. Comparison of annotation sources indicated that the NCBI annotation pipeline generated more and longer FBP annotations on average than genome-specific annotation pipelines. The pattern of diversification of each enzyme among asterids was assessed by phylogenetic analysis, showing that the CHS superfamily encompasses a large paralogous family of ancient and recent duplicates, whereas other FBP enzymes have diversified via recent duplications in particular lineages. Heterologous expression of a pansy F3'5'H gene in tobacco changed flower color from pink to dark purple, demonstrating that anthocyanin production can be predictably modified using reverse genetics. These results suggest that the Solanaceae FBP could be an ideal system to model genotype-to-phenotype interactions for secondary metabolism.


Asunto(s)
Antocianinas/biosíntesis , Genoma de Planta , Metabolismo Secundario , Solanaceae/metabolismo , Antocianinas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Solanaceae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA