Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Neurosci ; 39(41): 7994-8012, 2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31455662

RESUMEN

The calyx of Held, a large glutamatergic presynaptic terminal in the auditory brainstem undergoes developmental changes to support the high action-potential firing rates required for auditory information encoding. In addition, calyx terminals are morphologically diverse, which impacts vesicle release properties and synaptic plasticity. Mitochondria influence synaptic plasticity through calcium buffering and are crucial for providing the energy required for synaptic transmission. Therefore, it has been postulated that mitochondrial levels increase during development and contribute to the morphological-functional diversity in the mature calyx. However, the developmental profile of mitochondrial volumes and subsynaptic distribution at the calyx of Held remains unclear. To provide insight on this, we developed a helper-dependent adenoviral vector that expresses the genetically encoded peroxidase marker for mitochondria, mito-APEX2, at the mouse calyx of Held. We developed protocols to detect labeled mitochondria for use with serial block face scanning electron microscopy to carry out semiautomated segmentation of mitochondria, high-throughput whole-terminal reconstruction, and presynaptic ultrastructure in mice of either sex. Subsequently, we measured mitochondrial volumes and subsynaptic distributions at the immature postnatal day (P)7 and the mature (P21) calyx. We found an increase of mitochondria volumes in terminals and axons from P7 to P21 but did not observe differences between stalk and swelling subcompartments in the mature calyx. Based on these findings, we propose that mitochondrial volumes and synaptic localization developmentally increase to support high firing rates required in the initial stages of auditory information processing.SIGNIFICANCE STATEMENT Elucidating the developmental processes of auditory brainstem presynaptic terminals is critical to understanding auditory information encoding. Additionally, morphological-functional diversity at these terminals is proposed to enhance coding capacity. Mitochondria provide energy for synaptic transmission and can buffer calcium, impacting synaptic plasticity; however, their developmental profile to ultimately support the energetic demands of synapses following the onset of hearing remains unknown. Therefore, we created a helper-dependent adenoviral vector with the mitochondria-targeting peroxidase mito-APEX2 and expressed it at the mouse calyx of Held. Volumetric reconstructions of serial block face electron microscopy data of immature and mature labeled calyces reveal that mitochondrial volumes are increased to support high firing rates upon maturity.


Asunto(s)
Mitocondrias/fisiología , Tamaño Mitocondrial/fisiología , Terminales Presinápticos/fisiología , Sinapsis/fisiología , Potenciales de Acción , Animales , Axones/metabolismo , Axones/ultraestructura , Tronco Encefálico/crecimiento & desarrollo , Tronco Encefálico/ultraestructura , Calcio/fisiología , Fenómenos Electrofisiológicos/fisiología , Metabolismo Energético/fisiología , Femenino , Vectores Genéticos , Procesamiento de Imagen Asistido por Computador , Masculino , Ratones , Mitocondrias/ultraestructura , Plasticidad Neuronal , Terminales Presinápticos/ultraestructura
2.
Neuron ; 109(24): 4068-4079.e6, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34687665

RESUMEN

Retinotopic maps of many visual areas are thought to follow the fundamental principles described for the primary visual cortex (V1), where nearby points on the retina map to nearby points on the surface of V1, and orthogonal axes of the retinal surface are represented along orthogonal axes of the cortical surface. Here we demonstrate a striking departure from this mapping in the secondary visual area (V2) of the tree shrew best described as a sinusoidal transformation of the visual field. This sinusoidal topography is ideal for achieving uniform coverage in an elongated area like V2, as predicted by mathematical models designed for wiring minimization, and provides a novel explanation for periodic banded patterns of intra-cortical connections and functional response properties in V2 of tree shrews as well as several other species. Our findings suggest that cortical circuits flexibly implement solutions to sensory surface representation, with dramatic consequences for large-scale cortical organization.


Asunto(s)
Corteza Visual , Campos Visuales , Mapeo Encefálico , Retina , Corteza Visual/fisiología , Vías Visuales/fisiología
3.
Neuron ; 101(2): 260-273.e6, 2019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30545599

RESUMEN

The abundance of presynaptic CaV2 voltage-gated Ca2+ channels (CaV2) at mammalian active zones (AZs) regulates the efficacy of synaptic transmission. It is proposed that presynaptic CaV2 levels are saturated in AZs due to a finite number of slots that set CaV2 subtype abundance and that CaV2.1 cannot compete for CaV2.2 slots. However, at most AZs, CaV2.1 levels are highest and CaV2.2 levels are developmentally reduced. To investigate CaV2.1 saturation states and preference in AZs, we overexpressed the CaV2.1 and CaV2.2 α1 subunits at the calyx of Held at immature and mature developmental stages. We found that AZs prefer CaV2.1 to CaV2.2. Remarkably, CaV2.1 α1 subunit overexpression drove increased CaV2.1 currents and channel numbers and increased synaptic strength at both developmental stages examined. Therefore, we propose that CaV2.1 levels in the AZ are not saturated and that synaptic strength can be modulated by increasing CaV2.1 levels to regulate neuronal circuit output. VIDEO ABSTRACT.


Asunto(s)
Tronco Encefálico/citología , Canales de Calcio Tipo N/metabolismo , Terminales Presinápticos/fisiología , Sinapsis/fisiología , Transmisión Sináptica/genética , Animales , Animales Recién Nacidos , Biofisica , Cloruro de Cadmio/farmacología , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo N/genética , Estimulación Eléctrica , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neurotransmisores/metabolismo , Terminales Presinápticos/ultraestructura , Sinapsis/ultraestructura
4.
Front Cell Neurosci ; 13: 467, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31680875

RESUMEN

Synapse loss and dendritic damage correlate with cognitive decline in many neurodegenerative diseases, underlie neurodevelopmental disorders, and are associated with environmental and drug-induced CNS toxicities. However, screening assays designed to measure loss of synaptic connections between live cells are lacking. Here, we describe the design and validation of automated synaptic imaging assay (ASIA), an efficient approach to label, image, and analyze synapses between live neurons. Using viral transduction to express fluorescent proteins that label synapses and an automated computer-controlled microscope, we developed a method to identify agents that regulate synapse number. ASIA is compatible with both confocal and wide-field microscopy; wide-field image acquisition is faster but requires a deconvolution step in the analysis. Both types of images feed into batch processing analysis software that can be run on ImageJ, CellProfiler, and MetaMorph platforms. Primary analysis endpoints are the number of structural synapses and cell viability. Thus, overt cell death is differentiated from subtle changes in synapse density, an important distinction when studying neurodegenerative processes. In rat hippocampal cultures treated for 24 h with 100 µM 2-bromopalmitic acid (2-BP), a compound that prevents clustering of postsynaptic density 95 (PSD95), ASIA reliably detected loss of postsynaptic density 95-enhanced green fluorescent protein (PSD95-eGFP)-labeled synapses in the absence of cell death. In contrast, treatment with 100 µM glutamate produced synapse loss and significant cell death, determined from morphological changes in a binary image created from co-expressed mCherry. Treatment with 3 mM lithium for 24 h significantly increased the number of fluorescent puncta, showing that ASIA also detects synaptogenesis. Proof of concept studies show that cell-specific promoters enable the selective study of inhibitory or principal neurons and that alternative reporter constructs enable quantification of GABAergic or glutamatergic synapses. ASIA can also be used to study synapse loss between human induced pluripotent stem cell (iPSC)-derived cortical neurons. Significant synapse loss in the absence of cell death was detected in the iPSC-derived neuronal cultures treated with either 100 µM 2-BP or 100 µM glutamate for 24 h, while 300 µM glutamate produced synapse loss and cell death. ASIA shows promise for identifying agents that evoke synaptic toxicities and screening for compounds that prevent or reverse synapse loss.

5.
Cell Calcium ; 74: 53-60, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29957297

RESUMEN

Continuous neurotransmitter release is subjected to synaptic vesicle availability, which in turn depends on vesicle recycling and the traffic of vesicles between pools. We studied the role of Synaptotagmin-7 (Syt-7) in synaptic vesicle accessibility for release in hippocampal neurons in culture. Synaptic boutons from Syt-7 knockout (KO) mice displayed normal basal secretion with no alteration in the RRP size or the probability of release. However, stronger stimuli revealed an increase in the size of the reserve and resting vesicle pools in Syt-7 KO boutons compared with WT. These data suggest that Syt-7 plays a significant role in the vesicle pool homeostasis and, consequently, in the availability of vesicles for synaptic transmission during strong stimulation, probably, by facilitating advancing synaptic vesicles to the readily releasable pool.


Asunto(s)
Hipocampo/metabolismo , Neuronas/metabolismo , Transmisión Sináptica/fisiología , Vesículas Sinápticas/metabolismo , Sinaptotagminas/deficiencia , Animales , Animales Recién Nacidos , Células Cultivadas , Hipocampo/química , Ratones , Ratones Noqueados , Neuronas/química , Vesículas Sinápticas/química , Sinaptotagminas/análisis
6.
Elife ; 72018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29419376

RESUMEN

Stress can be a motivational force for decisive action and adapting to novel environment; whereas, exposure to chronic stress contributes to the development of depression and anxiety. However, the molecular mechanisms underlying stress-responsive behaviors are not fully understood. Here, we identified the orphan receptor GPR158 as a novel regulator operating in the prefrontal cortex (PFC) that links chronic stress to depression. GPR158 is highly upregulated in the PFC of human subjects with major depressive disorder. Exposure of mice to chronic stress also increased GPR158 protein levels in the PFC in a glucocorticoid-dependent manner. Viral overexpression of GPR158 in the PFC induced depressive-like behaviors. In contrast GPR158 ablation, led to a prominent antidepressant-like phenotype and stress resiliency. We found that GPR158 exerts its effects via modulating synaptic strength altering AMPA receptor activity. Taken together, our findings identify a new player in mood regulation and introduce a pharmacological target for managing depression.


Asunto(s)
Depresión/fisiopatología , Regulación de la Expresión Génica , Corteza Prefrontal/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Estrés Psicológico , Animales , Humanos , Ratones
7.
Cell Rep ; 21(8): 2082-2089, 2017 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-29166601

RESUMEN

Synaptotagmin 7 (Syt7) is thought to be a Ca2+ sensor that mediates asynchronous transmitter release and facilitation at synapses. However, Syt7 is strongly expressed in fast-spiking, parvalbumin-expressing GABAergic interneurons, and the output synapses of these neurons produce only minimal asynchronous release and show depression rather than facilitation. To resolve this apparent contradiction, we examined the effects of genetic elimination of Syt7 on synaptic transmission at the GABAergic basket cell (BC)-Purkinje cell (PC) synapse in cerebellum. Our results indicate that at the BC-PC synapse, Syt7 contributes to asynchronous release, pool replenishment, and facilitation. In combination, these three effects ensure efficient transmitter release during high-frequency activity and guarantee frequency independence of inhibition. Our results identify a distinct function of Syt7: ensuring the efficiency of high-frequency inhibitory synaptic transmission.


Asunto(s)
Cerebelo/metabolismo , Neuronas GABAérgicas/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Sinaptotagminas/metabolismo , Animales , Calcio/metabolismo , Interneuronas/metabolismo , Ratones Transgénicos , Parvalbúminas/metabolismo , Células de Purkinje/metabolismo , Sinaptotagminas/genética
8.
Cell Rep ; 18(3): 723-736, 2017 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-28099850

RESUMEN

GABAergic synapses in brain circuits generate inhibitory output signals with submillisecond latency and temporal precision. Whether the molecular identity of the release sensor contributes to these signaling properties remains unclear. Here, we examined the Ca2+ sensor of exocytosis at GABAergic basket cell (BC) to Purkinje cell (PC) synapses in cerebellum. Immunolabeling suggested that BC terminals selectively expressed synaptotagmin 2 (Syt2), whereas synaptotagmin 1 (Syt1) was enriched in excitatory terminals. Genetic elimination of Syt2 reduced action potential-evoked release to ∼10%, identifying Syt2 as the major Ca2+ sensor at BC-PC synapses. Differential adenovirus-mediated rescue revealed that Syt2 triggered release with shorter latency and higher temporal precision and mediated faster vesicle pool replenishment than Syt1. Furthermore, deletion of Syt2 severely reduced and delayed disynaptic inhibition following parallel fiber stimulation. Thus, the selective use of Syt2 as release sensor at BC-PC synapses ensures fast and efficient feedforward inhibition in cerebellar microcircuits.


Asunto(s)
Calcio/metabolismo , Sinapsis/metabolismo , Sinaptotagmina II/genética , Adenoviridae/genética , Animales , Cerebelo/metabolismo , Cerebelo/patología , Potenciales Evocados/efectos de los fármacos , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Fluorescente , Ácidos Fosfínicos/farmacología , Células de Purkinje/metabolismo , Piridinas/farmacología , Transmisión Sináptica/efectos de los fármacos , Sinaptotagmina I/genética , Sinaptotagmina I/metabolismo , Sinaptotagmina II/deficiencia , Sinaptotagmina II/metabolismo
9.
Elife ; 62017 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-28786379

RESUMEN

In central nervous system (CNS) synapses, action potential-evoked neurotransmitter release is principally mediated by CaV2.1 calcium channels (CaV2.1) and is highly dependent on the physical distance between CaV2.1 and synaptic vesicles (coupling). Although various active zone proteins are proposed to control coupling and abundance of CaV2.1 through direct interactions with the CaV2.1 α1 subunit C-terminus at the active zone, the role of these interaction partners is controversial. To define the intrinsic motifs that regulate coupling, we expressed mutant CaV2.1 α1 subunits on a CaV2.1 null background at the calyx of Held presynaptic terminal. Our results identified a region that directly controlled fast synaptic vesicle release and vesicle docking at the active zone independent of CaV2.1 abundance. In addition, proposed individual direct interactions with active zone proteins are insufficient for CaV2.1 abundance and coupling. Therefore, our work advances our molecular understanding of CaV2.1 regulation of neurotransmitter release in mammalian CNS synapses.


Asunto(s)
Canales de Calcio Tipo N/metabolismo , Fusión de Membrana , Terminales Presinápticos/enzimología , Vesículas Sinápticas/metabolismo , Animales , Canales de Calcio Tipo N/genética , Análisis Mutacional de ADN , Ratones , Neurotransmisores/metabolismo
10.
Methods Mol Biol ; 1474: 73-90, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27515075

RESUMEN

Neuroscience research has been revolutionized by the use of recombinant viral vector technology from the basic, preclinical and clinical levels. Currently, multiple recombinant viral vector types are employed with each having its strengths and weaknesses depending on the proposed application. Helper-dependent adenoviral vectors (HdAd) are emerging as ideal viral vectors that solve a major need in the neuroscience field: (1) expression of transgenes that are too large to be packaged by other viral vectors and (2) rapid onset of transgene expression in the absence of cytotoxicity. Here, we describe the methods for large-scale production of HdAd viral vectors for in vivo use with neurospecific transgene expression.


Asunto(s)
Adenoviridae/genética , Vectores Genéticos/metabolismo , Virus Helper/genética , Neurociencias/métodos , Adenoviridae/metabolismo , Expresión Génica , Vectores Genéticos/química , Células HEK293 , Virus Helper/metabolismo , Humanos , Transgenes
11.
Neuron ; 88(5): 918-925, 2015 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-26637799

RESUMEN

A cytomatrix of proteins at the presynaptic active zone (CAZ) controls the strength and speed of neurotransmitter release at synapses in response to action potentials. However, the functional role of many CAZ proteins and their respective isoforms remains unresolved. Here, we demonstrate that presynaptic deletion of the two G protein-coupled receptor kinase-interacting proteins (GITs), GIT1 and GIT2, at the mouse calyx of Held leads to a large increase in AP-evoked release with no change in the readily releasable pool size. Selective presynaptic GIT1 ablation identified a GIT1-specific role in regulating release probability that was largely responsible for increased synaptic strength. Increased synaptic strength was not due to changes in voltage-gated calcium channel currents or activation kinetics. Quantitative electron microscopy revealed unaltered ultrastructural parameters. Thus, our data uncover distinct roles for GIT1 and GIT2 in regulating neurotransmitter release strength, with GIT1 as a specific regulator of presynaptic release probability.


Asunto(s)
Encéfalo/citología , Proteínas de Ciclo Celular/deficiencia , Potenciales Postsinápticos Excitadores/genética , Proteínas Activadoras de GTPasa/deficiencia , Sinapsis/genética , Animales , Animales Recién Nacidos , Biofisica , Proteínas de Ciclo Celular/genética , Estimulación Eléctrica , Proteínas Activadoras de GTPasa/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Técnicas In Vitro , Péptidos y Proteínas de Señalización Intercelular , Ratones , Ratones Noqueados , Microscopía Electrónica de Transmisión , Técnicas de Placa-Clamp , Fosfoproteínas/deficiencia , Fosfoproteínas/genética , Probabilidad , Sinapsis/metabolismo , Sinapsis/ultraestructura , Transducción Genética , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA