Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Plant Cell ; 30(9): 2057-2081, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30120167

RESUMEN

Pollen tube growth requires a high amount of metabolic energy and precise targeting toward the ovules. Sugars, especially glucose, can serve as nutrients and as signaling molecules. Unexpectedly, in vitro assays revealed an inhibitory effect of glucose on pollen tube elongation, contradicting the hypothesis that monosaccharide uptake is a source of nutrition for growing pollen tubes. Measurements with Förster resonance energy transfer-based nanosensors revealed that glucose is taken up into pollen tubes and that the intracellular concentration is in the low micromolar range. Pollen tubes of stp4-6-8-9-10-11 sextuple knockout plants generated by crossings and CRISPR/Cas9 showed only a weak response to glucose, indicating that glucose uptake into pollen tubes is mediated mainly by these six monosaccharide transporters of the SUGAR TRANSPORT PROTEIN (STP) family. Analyses of HEXOKINASE1 (HXK1) showed a strong expression of this gene in pollen. Together with the glucose insensitivity and altered semi-in vivo growth rate of pollen tubes from hxk1 knockout lines, this strongly suggests that glucose is an important signaling molecule for pollen tubes, is taken up by STPs, and detected by HXK1. Equimolar amounts of fructose abolish the inhibitory effect of glucose indicating that only an excess of glucose is interpreted as a signal. This provides a possible model for the discrimination of signaling and nutritional sugars.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Glucosa/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Tubo Polínico/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Transporte Biológico/genética , Transporte Biológico/fisiología , Regulación de la Expresión Génica de las Plantas , Hexoquinasa , Proteínas de Transporte de Monosacáridos/genética , Tubo Polínico/crecimiento & desarrollo , Polinización/genética , Polinización/fisiología
2.
Traffic ; 19(7): 503-521, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29573093

RESUMEN

Adaptor protein complexes mediate cargo selection and vesicle trafficking to different cellular membranes in all eukaryotic cells. Information on the role of AP4 in plants is still limited. Here, we present the analyses of Arabidopsis thaliana mutants lacking different subunits of AP4. These mutants show abnormalities in their development and in protein sorting. We found that growth of roots and etiolated hypocotyls, as well as male fertility and trichome morphology are disturbed in ap4. Analyses of GFP-fusions transiently expressed in mesophyll protoplasts demonstrated that the tonoplast (TP) proteins MOT2, NRAMP3 and NRAMP4, but not INT1, are partially sorted to the plasma membrane (PM) in the absence of a functional AP4 complex. Moreover, alanine mutagenesis revealed that in wild-type plants, sorting of NRAMP3 and NRAMP4 to the TP requires an N-terminal dileucine-based motif. The NRAMP3 or NRAMP4 N-terminal domain containing the dileucine motif was sufficient to redirect the PM localized INT4 protein to the TP and to confer AP4-dependency on sorting of INT1. Our data show that correct sorting of NRAMP3 and NRAMP4 depends on both, an N-terminal dileucine-based motif as well as AP4.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte de Catión/metabolismo , Señales de Clasificación de Proteína , Complejo 4 de Proteína Adaptadora/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/genética , Membrana Celular/metabolismo , Transporte de Proteínas
3.
Plant J ; 94(5): 751-766, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29654648

RESUMEN

The development of multicellular plants relies on the ability of their cells to exchange solutes, proteins and signalling compounds through plasmodesmata, symplasmic pores in the plant cell wall. The aperture of plasmodesmata is regulated in response to developmental cues or external factors such as pathogen attack. This regulation enables tight control of symplasmic cell-to-cell transport. Here we report on an elegant non-invasive method to quantify the passive movement of protein between selected cells even in deeper tissue layers. The system is based on the fluorescent protein DRONPA-s, which can be switched on and off repeatedly by illumination with different light qualities. Using transgenic 35S::DRONPA-s Arabidopsis thaliana and a confocal microscope it was possible to activate DRONPA-s fluorescence in selected cells of the root meristem. This enabled us to compare movement of DRONPA-s from the activated cells into the respective neighbouring cells. Our analyses showed that pericycle cells display the highest efflux capacity with a good lateral connectivity. In contrast, root cap cells showed the lowest efflux of DRONPA-s. Plasmodesmata of quiescent centre cells mediated a stronger efflux into columella cells than into stele initials. To simplify measurements of fluorescence intensity in a complex tissue we developed software that allows simultaneous analyses of fluorescence intensities of several neighbouring cells. Our DRONPA-s system generates reproducible data and is a valuable tool for studying symplasmic connectivity.


Asunto(s)
Proteínas Luminiscentes/metabolismo , Células Vegetales/fisiología , Arabidopsis/metabolismo , Arabidopsis/fisiología , Transporte Biológico/fisiología , Pared Celular/metabolismo , Fluorescencia , Meristema/citología , Microscopía Confocal , Células Vegetales/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/citología , Plantas Modificadas Genéticamente , Plasmodesmos/metabolismo , Plasmodesmos/fisiología
4.
Plant Physiol ; 176(3): 2330-2350, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29311272

RESUMEN

The controlled distribution of sugars between assimilate-exporting source tissues and sugar-consuming sink tissues is a key element for plant growth and development. Monosaccharide transporters of the SUGAR TRANSPORT PROTEIN (STP) family contribute to the uptake of sugars into sink cells. Here, we report on the characterization of STP7, STP8, and STP12, three previously uncharacterized members of this family in Arabidopsis (Arabidopsis thaliana). Heterologous expression in yeast (Saccharomyces cerevisiae) revealed that STP8 and STP12 catalyze the high-affinity proton-dependent uptake of glucose and also accept galactose and mannose. STP12 additionally transports xylose. STP8 and STP12 are highly expressed in reproductive organs, where their protein products might contribute to sugar uptake into the pollen tube and the embryo sac. stp8.1 and stp12.1 T-DNA insertion lines developed normally, which may point toward functional redundancy with other STPs. In contrast to all other STPs, STP7 does not transport hexoses but is specific for the pentoses l-arabinose and d-xylose. STP7-promoter-reporter gene plants showed an expression of STP7 especially in tissues with high cell wall turnover, indicating that STP7 might contribute to the uptake and recycling of cell wall sugars. Uptake analyses with radioactive l-arabinose revealed that 11 other STPs are able to transport l-arabinose with high affinity. Hence, functional redundancy might explain the missing-mutant phenotype of two stp7 T-DNA insertion lines. Together, these data complete the characterization of the STP family and present the STPs as new l-arabinose transporters for potential biotechnological applications.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabinosa/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Xilosa/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , ADN Bacteriano , Regulación de la Expresión Génica de las Plantas , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Transporte de Monosacáridos/genética , Plantas Modificadas Genéticamente , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
5.
Plant Physiol ; 170(2): 790-806, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26662272

RESUMEN

The Yang or Met Cycle is a series of reactions catalyzing the recycling of the sulfur (S) compound 5'-methylthioadenosine (MTA) to Met. MTA is produced as a by-product in ethylene, nicotianamine, and polyamine biosynthesis. Whether the Met Cycle preferentially fuels one of these pathways in a S-dependent manner remained unclear so far. We analyzed Arabidopsis (Arabidopsis thaliana) mutants with defects in the Met Cycle enzymes 5-METHYLTHIORIBOSE-1-PHOSPHATE-ISOMERASE1 (MTI1) and DEHYDRATASE-ENOLASE-PHOSPHATASE-COMPLEX1 (DEP1) under different S conditions and assayed the contribution of the Met Cycle to the regeneration of S for these pathways. Neither mti1 nor dep1 mutants could recycle MTA but showed S-dependent reproductive failure, which was accompanied by reduced levels of the polyamines putrescine, spermidine, and spermine in mutant inflorescences. Complementation experiments with external application of these three polyamines showed that only the triamine spermine could specifically rescue the S-dependent reproductive defects of the mutant plants. Furthermore, expressing gene-reporter fusions in Arabidopsis showed that MTI1 and DEP1 were mainly expressed in the vasculature of all plant parts. Phloem-specific reconstitution of Met Cycle activity in mti1 and dep1 mutant plants was sufficient to rescue their S-dependent mutant phenotypes. We conclude from these analyses that phloem-specific S recycling during periods of S starvation is essential for the biosynthesis of polyamines required for flowering and seed development.


Asunto(s)
Isomerasas Aldosa-Cetosa/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Metionina/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Azufre/metabolismo , Isomerasas Aldosa-Cetosa/genética , Arabidopsis/citología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Desoxiadenosinas/metabolismo , Etilenos/metabolismo , Flores/citología , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Mutación , Especificidad de Órganos , Floema/citología , Floema/genética , Floema/crecimiento & desarrollo , Floema/metabolismo , Poliaminas/metabolismo , Putrescina/metabolismo , Semillas/citología , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Espermidina/metabolismo , Espermina/metabolismo , Tioglicósidos , Tionucleósidos/metabolismo
6.
J Integr Plant Biol ; 59(6): 422-435, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28296205

RESUMEN

The biotrophic fungus Ustilago maydis causes corn smut disease, inducing tumor formation in its host Zea mays. Upon infection, the fungal hyphae invaginate the plasma membrane of infected maize cells, establishing an interface where pathogen and host are separated only by their plasma membranes. At this interface the fungal and maize sucrose transporters, UmSrt1 and ZmSUT1, compete for extracellular sucrose in the corn smut/maize pathosystem. Here we biophysically characterized ZmSUT1 and UmSrt1 in Xenopus oocytes with respect to their voltage-, pH- and substrate-dependence and determined affinities toward protons and sucrose. In contrast to ZmSUT1, UmSrt1 has a high affinity for sucrose and is relatively pH- and voltage-independent. Using these quantitative parameters, we developed a mathematical model to simulate the competition for extracellular sucrose at the contact zone between the fungus and the host plant. This approach revealed that UmSrt1 exploits the apoplastic sucrose resource, which forces the plant transporter into a sucrose export mode providing the fungus with sugar from the phloem. Importantly, the high sucrose concentration in the phloem appeared disadvantageous for the ZmSUT1, preventing sucrose recovery from the apoplastic space in the fungus/plant interface.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Interacciones Huésped-Patógeno , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Ustilago/metabolismo , Zea mays/microbiología , Animales , Concentración de Iones de Hidrógeno , Potenciales de la Membrana , Modelos Biológicos , Sacarosa/metabolismo , Xenopus , Zea mays/metabolismo
7.
J Exp Bot ; 67(8): 2387-99, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26893494

RESUMEN

Pollen tubes are fast growing, photosynthetically inactive cells. Their energy demand is covered by specific transport proteins in the plasma membrane that mediate the uptake of sugars. Here we report on the functional characterization of AtSTP10, a previously uncharacterized member of the SUGAR TRANSPORT PROTEIN family. Heterologous expression of STP10 cDNA in yeast revealed that the encoded protein catalyses the high-affinity uptake of glucose, galactose and mannose. The transporter is sensitive to uncouplers of transmembrane proton gradients, indicating that the protein acts as a hexose-H(+)symporter. Analyses of STP10 mRNA and STP10 promoter-reporter gene studies revealed a sink-specific expression pattern of STP10 in primordia of lateral roots and in pollen tubes. This restriction to sink organs is mediated by intragenic regions of STP10 qPCR analyses with cDNA of in vitro grown pollen tubes showed that STP10 expression was down-regulated in the presence of 50mM glucose. However, in pollen tubes of glucose-insensitive plants, which lack the glucose sensor hexokinase1 (HXK1), no glucose-induced down-regulation of STP10 expression was detected. A stp10T-DNA insertion line developed normally, which may point towards functional redundancy. The data presented in this paper indicate that a high-affinity glucose uptake system is induced in growing pollen tubes under low glucose conditions and that this regulation may occur through the hexokinase pathway.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Glucosa/farmacología , Proteínas de Transporte de Monosacáridos/metabolismo , Tubo Polínico/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/efectos de los fármacos , ADN Bacteriano/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes Reporteros , Glucuronidasa/metabolismo , Proteínas de Transporte de Monosacáridos/genética , Mutagénesis Insercional/genética , Tubo Polínico/efectos de los fármacos , Regiones Promotoras Genéticas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Saccharomyces cerevisiae/metabolismo , Análisis de Secuencia de Proteína , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo
8.
Plant Cell ; 25(9): 3434-49, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24014545

RESUMEN

Vacuoles are multifunctional organelles essential for the sessile lifestyle of plants. Despite their central functions in cell growth, storage, and detoxification, knowledge about mechanisms underlying their biogenesis and associated protein trafficking pathways remains limited. Here, we show that in meristematic cells of the Arabidopsis thaliana root, biogenesis of vacuoles as well as the trafficking of sterols and of two major tonoplast proteins, the vacuolar H(+)-pyrophosphatase and the vacuolar H(+)-adenosinetriphosphatase, occurs independently of endoplasmic reticulum (ER)-Golgi and post-Golgi trafficking. Instead, both pumps are found in provacuoles that structurally resemble autophagosomes but are not formed by the core autophagy machinery. Taken together, our results suggest that vacuole biogenesis and trafficking of tonoplast proteins and lipids can occur directly from the ER independent of Golgi function.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Retículo Endoplásmico/metabolismo , Vacuolas/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Genes Reporteros , Aparato de Golgi/metabolismo , Concentración de Iones de Hidrógeno , Pirofosfatasa Inorgánica/genética , Pirofosfatasa Inorgánica/metabolismo , Metabolismo de los Lípidos , Meristema/enzimología , Meristema/genética , Meristema/fisiología , Meristema/ultraestructura , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Raíces de Plantas/ultraestructura , Plantas Modificadas Genéticamente , Transporte de Proteínas , Proteínas Recombinantes de Fusión , Esteroles/metabolismo
9.
Plant J ; 78(1): 107-20, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24635680

RESUMEN

Plant development requires accurate coordination of gene expression, both in actively dividing meristematic cells and differentiated cells. Cell fate establishment and maintenance, among others, are mediated by chromatin organization complexes that determine the stable transcriptional states of specific cell types. Here, we focus on MAIN-LIKE1 (MAIL1), one of three homologs of MAINTENANCE OF MERISTEMS (MAIN), which form a plant-specific gene family in Arabidopsis thaliana. We show that MAIL1 encodes a ubiquitously expressed nuclear protein. A mail1 loss-of-function mutant developed short primary roots, in which the meristematic cells accumulated DNA double-strand breaks and underwent massive cell death. In addition, mail1 mutant showed also cell differentiation defects in root and shoot tissues, and developed disorganized callus-like structures. The genetic interaction between main and mail1 mutants suggests that they act in the same pathway, and that both are essential for maintaining correct cell division acitivity in meristematic cells, while MAIL1 has an additional function in differentiating cells.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Diferenciación Celular , División Celular , Expresión Génica , Genes Reporteros , Meristema/genética , Meristema/crecimiento & desarrollo , Meristema/fisiología , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenotipo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/fisiología , Plantas Modificadas Genéticamente , Proteínas Recombinantes de Fusión , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/fisiología
10.
New Phytol ; 206(3): 1086-1100, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25678342

RESUMEN

The smut Ustilago maydis, a ubiquitous pest of corn, is highly adapted to its host to parasitize on its organic carbon sources. We have identified a hexose transporter, Hxt1, as important for fungal development during both the saprophytic and the pathogenic stage of the fungus. Hxt1 was characterized as a high-affinity transporter for glucose, fructose, and mannose; ∆hxt1 strains show significantly reduced growth on these substrates, setting Hxt1 as the main hexose transporter during saprophytic growth. After plant infection, ∆hxt1 strains show decreased symptom development. However, expression of a Hxt1 protein with a mutation leading to constitutively active signaling in the yeast glucose sensors Snf3p and Rgt2p results in completely apathogenic strains. Fungal development is stalled immediately after plant penetration, implying a dual function of Hxt1 as transporter and sensor. As glucose sensors are only known for yeasts, 'transceptor' as Hxt1 may constitute a general mechanism for sensing of glucose in fungi. In U. maydis, Hxt1 links a nutrient-dependent environmental signal to the developmental program during pathogenic development.


Asunto(s)
Proteínas Fúngicas/fisiología , Proteínas de Transporte de Monosacáridos/fisiología , Ustilago/patogenicidad , Factores de Virulencia/fisiología , Zea mays/microbiología , Sustitución de Aminoácidos , Fructosa/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glucosa/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Transducción de Señal , Ustilago/genética , Ustilago/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
11.
J Exp Bot ; 66(15): 4807-19, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26022258

RESUMEN

Trees are generally assumed to be symplastic phloem loaders. A typical feature for most wooden species is an open minor vein structure with symplastic connections between mesophyll cells and phloem cells, which allow sucrose to move cell-to-cell through the plasmodesmata into the phloem. Fraxinus excelsior (Oleaceae) also translocates raffinose family oligosaccharides in addition to sucrose. Sucrose concentration was recently shown to be higher in the phloem sap than in the mesophyll cells. This suggests the involvement of apoplastic steps and the activity of sucrose transporters in addition to symplastic phloem-loading processes. In this study, the sucrose transporter FeSUT1 from F. excelsior was analysed. Heterologous expression in baker's yeast showed that FeSUT1 mediates the uptake of sucrose. Immunohistochemical analyses revealed that FeSUT1 was exclusively located in phloem cells of minor veins and in the transport phloem of F. excelsior. Further characterization identified these cells as sieve elements and possibly ordinary companion cells but not as intermediary cells. The localization and expression pattern point towards functions of FeSUT1 in phloem loading of sucrose as well as in sucrose retrieval. FeSUT1 is most likely responsible for the observed sucrose gradient between mesophyll and phloem. The elevated expression level of FeSUT1 indicated an increased apoplastic carbon export activity from the leaves during spring and late autumn. It is hypothesized that the importance of apoplastic loading is high under low-sucrose conditions and that the availability of two different phloem-loading mechanisms confers advantages for temperate woody species like F. excelsior.


Asunto(s)
Fraxinus/genética , Proteínas de Transporte de Membrana/genética , Proteínas de Plantas/genética , Sacarosa/metabolismo , Transporte Biológico , Fraxinus/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Organismos Modificados Genéticamente/genética , Organismos Modificados Genéticamente/metabolismo , Floema/metabolismo , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
12.
Plant Cell ; 24(1): 215-32, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22253225

RESUMEN

Vacuoles perform a multitude of functions in plant cells, including the storage of amino acids and sugars. Tonoplast-localized transporters catalyze the import and release of these molecules. The mechanisms determining the targeting of these transporters to the tonoplast are largely unknown. Using the paralogous Arabidopsis thaliana inositol transporters INT1 (tonoplast) and INT4 (plasma membrane), we performed domain swapping and mutational analyses and identified a C-terminal di-leucine motif responsible for the sorting of higher plant INT1-type transporters to the tonoplast in Arabidopsis mesophyll protoplasts. We demonstrate that this motif can reroute other proteins, such as INT4, SUCROSE TRANSPORTER2 (SUC2), or SWEET1, to the tonoplast and that the position of the motif relative to the transmembrane helix is critical. Rerouted INT4 is functionally active in the tonoplast and complements the growth phenotype of an int1 mutant. In Arabidopsis plants defective in the ß-subunit of the AP-3 adaptor complex, INT1 is correctly localized to the tonoplast, while sorting of the vacuolar sucrose transporter SUC4 is blocked in cis-Golgi stacks. Moreover, we demonstrate that both INT1 and SUC4 trafficking to the tonoplast is sensitive to brefeldin A. Our data show that plants possess at least two different Golgi-dependent targeting mechanisms for newly synthesized transporters to the tonoplast.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Células del Mesófilo/citología , Protoplastos/metabolismo , Vacuolas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transporte de Proteínas , Vacuolas/genética
13.
Plant J ; 73(3): 392-404, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23031218

RESUMEN

The Arabidopsis SUC5 protein represents a classical sucrose/H(+) symporter. Functional analyses previously revealed that SUC5 also transports biotin, an essential co-factor for fatty acid synthesis. However, evidence for a dual role in transport of the structurally unrelated compounds sucrose and biotin in plants was lacking. Here we show that SUC5 localizes to the plasma membrane, and that the SUC5 gene is expressed in developing embryos, confirming the role of the SUC5 protein as substrate carrier across apoplastic barriers in seeds. We show that transport of biotin but not of sucrose across these barriers is impaired in suc5 mutant embryos. In addition, we show that SUC5 is essential for the delivery of biotin into the embryo of biotin biosynthesis-defective mutants (bio1 and bio2). We compared embryo and seedling development as well as triacylglycerol accumulation and fatty acid composition in seeds of single mutants (suc5, bio1 or bio2), double mutants (suc5 bio1 and suc5 bio2) and wild-type plants. Although suc5 mutants were like the wild-type, bio1 and bio2 mutants showed developmental defects and reduced triacylglycerol contents. In suc5 bio1 and suc5 bio2 double mutants, developmental defects were severely increased and the triacylglycerol content was reduced to a greater extent in comparison to the single mutants. Supplementation with externally applied biotin helped to reduce symptoms in both single and double mutants, but the efficacy of supplementation was significantly lower in double than in single mutants, showing that transport of biotin into the embryo is lower in the absence of SUC5.


Asunto(s)
Arabidopsis/embriología , Biotina/metabolismo , Proteínas de Transporte de Membrana/fisiología , Proteínas de Plantas/fisiología , Semillas/metabolismo , Triglicéridos/metabolismo , Alelos , Arabidopsis/genética , Arabidopsis/metabolismo , Ácidos Grasos/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas de Transporte de Membrana/genética , Mutación , Proteínas de Plantas/genética , Semillas/crecimiento & desarrollo , Sacarosa/metabolismo
14.
Plant J ; 75(3): 469-83, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23607329

RESUMEN

Stem cells in the root and shoot apical meristem provide the descendant cells required for growth and development throughout the lifecycle of a plant. We found that mutations in the Arabidopsis MAINTENANCE OF MERISTEMS (MAIN) gene led to plants with distorted stem cell niches in which stem cells are not maintained and undergo premature differentiation or cell death. The malfunction of main meristems leads to short roots, mis-shaped leaves, reduced fertility and partial fasciation of stems. MAIN encodes a nuclear-localized protein and is a member of a so far uncharacterized plant-specific gene family. As main mutant plants are hypersensitive to DNA-damaging agents, expression of genes involved in DNA repair is induced and dead cells with damaged DNA accumulate in the mutant meristems, we propose that MAIN is required for meristem maintenance by sustaining genome integrity in stem cells and their descendants cells.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Inestabilidad Genómica , Meristema/genética , Mutación , Proteínas Nucleares/genética , Proteínas de Arabidopsis/metabolismo , Diferenciación Celular/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Daño del ADN/genética , Regulación de la Expresión Génica de las Plantas , Proteínas Nucleares/metabolismo , Fenotipo , Raíces de Plantas/genética , Brotes de la Planta/genética , Semillas/genética , Semillas/crecimiento & desarrollo
15.
Plant Cell ; 23(10): 3812-23, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21972259

RESUMEN

For more than 400 million years, plants have maintained a mutualistic symbiosis with arbuscular mycorrhizal (AM) fungi. This evolutionary success can be traced to the role of these fungi in providing plants with mineral nutrients, particularly phosphate. In return, photosynthates are given to the fungus, which support its obligate biotrophic lifestyle. Although the mechanisms involved in phosphate transfer have been extensively studied, less is known about the reciprocal transfer of carbon. Here, we present the high-affinity Monosaccharide Transporter2 (MST2) from Glomus sp with a broad substrate spectrum that functions at several symbiotic root locations. Plant cell wall sugars can efficiently outcompete the Glc uptake capacity of MST2, suggesting they can serve as alternative carbon sources. MST2 expression closely correlates with that of the mycorrhiza-specific Phosphate Transporter4 (PT4). Furthermore, reduction of MST2 expression using host-induced gene silencing resulted in impaired mycorrhiza formation, malformed arbuscules, and reduced PT4 expression. These findings highlight the symbiotic role of MST2 and support the hypothesis that the exchange of carbon for phosphate is tightly linked. Unexpectedly, we found that the external mycelium of AM fungi is able to take up sugars in a proton-dependent manner. These results imply that the sugar uptake system operating in this symbiosis is more complex than previously anticipated.


Asunto(s)
Glomeromycota/fisiología , Medicago truncatula/microbiología , Proteínas de Transporte de Monosacáridos/metabolismo , Micorrizas/fisiología , Simbiosis/fisiología , Secuencia de Bases , Transporte Biológico , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Biblioteca de Genes , Glomeromycota/genética , Glomeromycota/ultraestructura , Glucosa/metabolismo , Homeostasis , Medicago truncatula/fisiología , Datos de Secuencia Molecular , Proteínas de Transporte de Monosacáridos/genética , Micelio/metabolismo , Micorrizas/genética , Micorrizas/ultraestructura , Fosfatos/metabolismo , Filogenia , Raíces de Plantas/microbiología , Protones , Análisis de Secuencia de ADN , Transducción de Señal , Especificidad por Sustrato , Xilosa/metabolismo
16.
Plant Cell ; 23(5): 1904-19, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21540433

RESUMEN

The 5-methylthioadenosine (MTA) or Yang cycle is a set of reactions that recycle MTA to Met. In plants, MTA is a byproduct of polyamine, ethylene, and nicotianamine biosynthesis. Vascular transcriptome analyses revealed phloem-specific expression of the Yang cycle gene 5-METHYLTHIORIBOSE KINASE1 (MTK1) in Plantago major and Arabidopsis thaliana. As Arabidopsis has only a single MTK gene, we hypothesized that the expression of other Yang cycle genes might also be vascular specific. Reporter gene studies and quantitative analyses of mRNA levels for all Yang cycle genes confirmed this hypothesis for Arabidopsis and Plantago. This includes the Yang cycle genes 5-METHYLTHIORIBOSE-1-PHOSPHATE ISOMERASE1 and DEHYDRATASE-ENOLASE-PHOSPHATASE-COMPLEX1. We show that these two enzymes are sufficient for the conversion of methylthioribose-1-phosphate to 1,2-dihydroxy-3-keto-5-methylthiopentene. In bacteria, fungi, and animals, the same conversion is catalyzed in three to four separate enzymatic steps. Furthermore, comparative analyses of vascular and nonvascular metabolites identified Met, S-adenosyl Met, and MTA preferentially or almost exclusively in the vascular tissue. Our data represent a comprehensive characterization of the Yang cycle in higher plants and demonstrate that the Yang cycle works primarily in the vasculature. Finally, expression analyses of polyamine biosynthetic genes suggest that the Yang cycle in leaves recycles MTA derived primarily from polyamine biosynthesis.


Asunto(s)
Isomerasas Aldosa-Cetosa/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Desoxiadenosinas/metabolismo , Floema/enzimología , Proteínas de Plantas/genética , Plantago/enzimología , Poliaminas/metabolismo , Tionucleósidos/metabolismo , Isomerasas Aldosa-Cetosa/genética , Alquenos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ácido Azetidinocarboxílico/análogos & derivados , Ácido Azetidinocarboxílico/metabolismo , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes Reporteros , Metionina/metabolismo , Floema/genética , Floema/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Filogenia , Reguladores del Crecimiento de las Plantas , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Haz Vascular de Plantas/enzimología , Haz Vascular de Plantas/genética , Haz Vascular de Plantas/metabolismo , Plantago/genética , Plantago/metabolismo , ARN Mensajero/genética , ARN de Planta/genética , S-Adenosilmetionina/metabolismo , Transcriptoma , Levaduras/genética , Levaduras/metabolismo
17.
PLoS Biol ; 8(2): e1000303, 2010 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-20161717

RESUMEN

Plant pathogenic fungi cause massive yield losses and affect both quality and safety of food and feed produced from infected plants. The main objective of plant pathogenic fungi is to get access to the organic carbon sources of their carbon-autotrophic hosts. However, the chemical nature of the carbon source(s) and the mode of uptake are largely unknown. Here, we present a novel, plasma membrane-localized sucrose transporter (Srt1) from the corn smut fungus Ustilago maydis and its characterization as a fungal virulence factor. Srt1 has an unusually high substrate affinity, is absolutely sucrose specific, and allows the direct utilization of sucrose at the plant/fungal interface without extracellular hydrolysis and, thus, without the production of extracellular monosaccharides known to elicit plant immune responses. srt1 is expressed exclusively during infection, and its deletion strongly reduces fungal virulence. This emphasizes the central role of this protein both for efficient carbon supply and for avoidance of apoplastic signals potentially recognized by the host.


Asunto(s)
Proteínas Fúngicas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Sacarosa/metabolismo , Ustilago/metabolismo , Ustilago/patogenicidad , Virulencia/fisiología , Proteínas Fúngicas/genética , Prueba de Complementación Genética , Proteínas de Transporte de Membrana/genética , Microscopía Confocal , Microscopía Fluorescente , Filogenia , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reacción en Cadena de la Polimerasa , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ustilago/genética , Virulencia/genética , Zea mays/microbiología
18.
Traffic ; 11(6): 767-81, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20230529

RESUMEN

Inositols are indispensable components of cellular signaling molecules, and impaired cytoplasmic inositol concentrations affect cellular development. Although most cells can synthesize inositol de novo, plasma membrane-localized inositol uptake systems are indispensable for normal development. Here, we present in-depth functional analyses of plasma membrane-localized H(+)-inositol symporters from human and from the higher plant Arabidopsis thaliana. Sequence comparisons, structural and phylogenetic analyses revealed that these transporters possess conserved extracellular loop domains that represent homologs of plexins/semaphorin/integrin (PSI) domains from animal type I receptors. In these receptors, PSI domains modulate intracellular signaling via extracellular protein-protein interactions. Comparisons of H(+)-inositol symporters with wild type, mutated and truncated PSI domains in different expression systems showed that removal of the entire loop domain increased the V(max) of inositol uptake. Finally, we show that the PSI domains are targets for Ni(++) ions that cause a complete loss of transport activity. A possible role of Ni(++)-binding to PSI domains in Ni(++)-induced carcinogenicity is discussed.


Asunto(s)
Níquel/química , Proteínas de Plantas/química , Estructura Terciaria de Proteína , Secuencia de Aminoácidos , Animales , Arabidopsis/metabolismo , Transporte Biológico , Carcinógenos/química , Membrana Celular/metabolismo , Humanos , Inositol/química , Mesembryanthemum/metabolismo , Datos de Secuencia Molecular , Mutación , Mapeo de Interacción de Proteínas , Homología de Secuencia de Aminoácido
19.
J Biol Chem ; 286(23): 20913-22, 2011 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-21502323

RESUMEN

Plant pathogenic fungi use a wide range of different strategies to gain access to the carbon sources of their host plants. The hemibiotrophic maize pathogen Colletotrichum graminicola (teleomorph Glomerella graminicola) colonizes its host plants, and, after a short biotrophic phase, switches to destructive, necrotrophic development. Here we present the identification of five hexose transporter genes from C. graminicola, CgHXT1 to CgHXT5, the functional characterization of the encoded proteins, and detailed expression studies for these genes during vegetative and pathogenic development. Whereas CgHXT4 is expressed under all conditions analyzed, transcript abundances of CgHXT1 and CgHXT3 are transiently up-regulated during the biotrophic phase, and CgHXT2 and CgHXT5 are expressed exclusively during necrotrophic development. Analyses of the encoded proteins characterized CgHXT5 as a low-affinity/high-capacity hexose transporter with a narrow substrate specificity for glucose and mannose. In contrast, CgHXT1 to CgHXT3 are high affinity/low capacity transporters that also accept other substrates, including fructose, galactose, or xylose. CgHXT4, the largest of the identified proteins, has only little transport activity and may function as a sugar sensor. Phylogenetic studies revealed hexose transporters closely related to the five CgHXT proteins also in other pathogenic fungi suggesting conserved functions of these proteins during fungal pathogenesis.


Asunto(s)
Ascomicetos/metabolismo , Colletotrichum/metabolismo , Proteínas Fúngicas/biosíntesis , Regulación Fúngica de la Expresión Génica/fisiología , Proteínas de Transporte de Monosacáridos/biosíntesis , Enfermedades de las Plantas/microbiología , Zea mays/microbiología , Secuencia de Aminoácidos , Ascomicetos/genética , Colletotrichum/genética , Proteínas Fúngicas/genética , Datos de Secuencia Molecular , Proteínas de Transporte de Monosacáridos/genética
20.
Plant J ; 68(4): 681-92, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21771123

RESUMEN

The transition from vegetative to generative development is a major developmental switch in flowering plants and is critical for reproductive success. This transition requires reprogramming of lateral primordia at the shoot apical meristem, which leads to the formation of determinate floral meristems instead of leaves. In Arabidopsis, flowering is induced by a network of interacting pathways. In the photoperiod-dependent pathway, the two key elements mediating the effect of day length on flowering time are the transcription factors CONSTANS (CO) and the phloem mobile flowering signal FLOWERING LOCUS T (FT). Here, we identify a factor that is critically involved in this flowering response. The gene, which we named LATE FLOWERING (LATE), encodes a C(2)H(2) -type zinc-finger transcriptional regulator, and is expressed in the leaf vasculature and the vegetative shoot apical meristem. Ectopic expression of LATE in all tissues results in a dose-dependent phenotype characterized by late flowering, altered floral organ identity and sterile flowers. Using tissue-specific promoters, we further show that LATE controls the transition to flowering at two levels: first, it regulates the expression of flowering time genes in the leaf vasculature, and second, it interferes with floral meristem identity genes at the apex.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Flores/crecimiento & desarrollo , Proteínas Represoras/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Flores/genética , Regulación de la Expresión Génica de las Plantas , Meristema/genética , Meristema/crecimiento & desarrollo , Fotoperiodo , Proteínas Represoras/genética , Dedos de Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA