Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 22(2): e3002500, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38363801

RESUMEN

The frontopolar cortex (FPC) is, to date, one of the least understood regions of the prefrontal cortex. The current understanding of its function suggests that it plays a role in the control of exploratory behaviors by coordinating the activities of other prefrontal cortex areas involved in decision-making and exploiting actions based on their outcomes. Based on this hypothesis, FPC would drive fast-learning processes through a valuation of the different alternatives. In our study, we used a modified version of a well-known paradigm, the object-in-place (OIP) task, to test this hypothesis in electrophysiology. This paradigm is designed to maximize learning, enabling monkeys to learn in one trial, which is an ability specifically impaired after a lesion of the FPC. We showed that FPC neurons presented an extremely specific pattern of activity by representing the learning stage, exploration versus exploitation, and the goal of the action. However, our results do not support the hypothesis that neurons in the frontal pole compute an evaluation of different alternatives. Indeed, the position of the chosen target was strongly encoded at its acquisition, but the position of the unchosen target was not. Once learned, this representation was also found at the problem presentation, suggesting a monitoring activity of the synthetic goal preceding its acquisition. Our results highlight important features of FPC neurons in fast-learning processes without confirming their role in the disengagement of cognitive control from the current goals.


Asunto(s)
Objetivos , Haplorrinos , Aprendizaje , Corteza Cerebral , Conducta Exploratoria , Neuronas , Animales
2.
J Neurosci ; 2024 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-39424365

RESUMEN

Area TE is required for normal learning of visual categories based on perceptual similarity. To evaluate whether category learning changes neural activity in area TE, we trained two monkeys (both male) implanted with multi-electrode arrays to categorize natural images of cats and dogs. Neural activity during a passive viewing task was compared pre- and post-training. After the category training, the accuracy of abstract category decoding improved. Single units became more category-selective, the proportion of single units with category-selectivity increased, and units sustained their category-specific responses for longer. Visual category learning thus appears to enhance category separability in area TE by driving changes in the stimulus selectivity of individual neurons and by recruiting more units to the active network.Significance statement Neurons in Area TE are known to respond selectively to a small number of visual stimuli. Here we demonstrate that the neural activity in area TE is modulated by category learning of natural images (cats and dogs), thus demonstrating that this region is capable of undergoing rapid plastic changes in adult primates.

3.
Hippocampus ; 34(5): 261-275, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38516827

RESUMEN

Decades of studies robustly support a critical role for the hippocampus in spatial memory across a wide range of species. Hippocampal damage produces clear and consistent deficits in allocentric spatial memory that requires navigating through space in rodents, non-human primates, and humans. By contrast, damage to the hippocampus spares performance in most non-navigational spatial memory tasks-which can typically be resolved using egocentric cues. We previously found that transient inactivation of the hippocampus impairs performance in the Hamilton Search Task (HST), a self-ordered non-navigational spatial search task. A key question, however, still needs to be addressed. Acute, reversible inactivation of the hippocampus may have resulted in an impairment in the HST because this approach does not allow for neuroplastic compensation, may prevent the development of an alternative learning strategy, and/or may produce network-based effects that disrupt performance. We compared learning and performance on the HST in male rhesus macaques (six unoperated control animals and six animals that underwent excitotoxic lesions of the hippocampus). We found a significant impairment in animals with hippocampal lesions. While control animals improved in performance over the course of 45 days of training, performance in animals with hippocampal lesions remained at chance levels. The HST thus represents a sensitive assay for probing the integrity of the hippocampus in non-human primates. These data provide evidence demonstrating that the hippocampus is critical for this type of non-navigational spatial memory, and help to reconcile the many null findings previously reported.


Asunto(s)
Hipocampo , Macaca mulatta , Memoria Espacial , Animales , Hipocampo/fisiología , Masculino , Memoria Espacial/fisiología , Trastornos de la Memoria/fisiopatología , Trastornos de la Memoria/patología
4.
Hippocampus ; 34(11): 645-658, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39268888

RESUMEN

Despite bilateral hippocampal damage dating to the perinatal or early childhood period and severely impaired episodic memory, patients with developmental amnesia continue to exhibit well-developed semantic memory across the developmental trajectory. Detailed information on the extent and focality of brain damage in these patients is needed to hypothesize about the neural substrate that supports their remarkable capacity for encoding and retrieval of semantic memory. In particular, we need to assess whether the residual hippocampal tissue is involved in this preservation, or whether the surrounding cortical areas reorganize to rescue aspects of these critical cognitive memory processes after early injury. We used voxel-based morphometry (VBM) analysis, automatic (FreeSurfer) and manual segmentation to characterize structural changes in the brain of an exceptionally large cohort of 23 patients with developmental amnesia in comparison with 32 control subjects. Both the VBM and the FreeSurfer analyses revealed severe structural alterations in the hippocampus and thalamus of patients with developmental amnesia. Milder damage was found in the amygdala, caudate, and parahippocampal gyrus. Manual segmentation demonstrated differences in the degree of atrophy of the hippocampal subregions in patients. The level of atrophy in CA-DG subregions and subicular complex was more than 40%, while the atrophy of the uncus was moderate (-24%). Anatomo-functional correlations were observed between the volumes of residual hippocampal subregions in patients and selective aspects of their cognitive performance, viz, intelligence, working memory, and verbal and visuospatial recall. Our findings suggest that in patients with developmental amnesia, cognitive processing is compromised as a function of the extent of atrophy in hippocampal subregions. More severe hippocampal damage may be more likely to promote structural and/or functional reorganization in areas connected to the hippocampus. In this hypothesis, different levels of hippocampal function may be rescued following this variable reorganization. Our findings document not only the extent, but also the limits of circuit reorganization occurring in the young brain after early bilateral hippocampal damage.


Asunto(s)
Amnesia , Hipocampo , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Femenino , Masculino , Amnesia/diagnóstico por imagen , Amnesia/fisiopatología , Amnesia/patología , Adulto , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Adulto Joven , Adolescente , Pruebas Neuropsicológicas , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Encéfalo/fisiopatología , Atrofia/patología , Memoria/fisiología , Cognición/fisiología , Procesamiento de Imagen Asistido por Computador
5.
J Neurosci ; 42(32): 6267-6275, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35794012

RESUMEN

The orbitofrontal cortex (OFC) and its major downstream target within the basal ganglia-the rostromedial caudate nucleus (rmCD)-are involved in reward-value processing and goal-directed behavior. However, a causal contribution of the pathway linking these two structures to goal-directed behavior has not been established. Using the chemogenetic technology of designer receptors exclusively activated by designer drugs with a crossed inactivation design, we functionally and reversibly disrupted interactions between the OFC and rmCD in two male macaque monkeys. We injected an adeno-associated virus vector expressing an inhibitory designer receptor, hM4Di, into the OFC and contralateral rmCD, the expression of which was visualized in vivo by positron emission tomography and confirmed by postmortem immunohistochemistry. Functional disconnection of the OFC and rmCD resulted in a significant and reproducible loss of sensitivity to the cued reward value for goal-directed action. This decreased sensitivity was most prominent when monkeys had accumulated a certain amount of reward. These results provide causal evidence that the interaction between the OFC and the rmCD is needed for motivational control of action on the basis of the relative reward value and internal drive. This finding extends the current understanding of the physiological basis of psychiatric disorders in which goal-directed behavior is affected, such as obsessive-compulsive disorder.SIGNIFICANCE STATEMENT In daily life, we routinely adjust the speed and accuracy of our actions on the basis of the value of expected reward. Abnormalities in these kinds of motivational adjustments might be related to behaviors seen in psychiatric disorders such as obsessive-compulsive disorder. In the current study, we show that the connection from the orbitofrontal cortex to the rostromedial caudate nucleus is essential for motivational control of action in monkeys. This finding expands our knowledge about how the primate brain controls motivation and behavior and provides a particular insight into disorders like obsessive-compulsive disorder in which altered connectivity between the orbitofrontal cortex and the striatum has been implicated.


Asunto(s)
Núcleo Caudado , Motivación , Animales , Núcleo Caudado/fisiología , Objetivos , Humanos , Masculino , Corteza Prefrontal/fisiología , Recompensa
6.
Cereb Cortex ; 31(11): 4891-4900, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33987672

RESUMEN

The ability to categorize images is thought to depend on neural processing within the ventral visual stream. Recently, we reported that after removal of architectonic area TE, the terminal region of the ventral stream, monkeys were still able to categorize images as cats or dogs moderately well. Here, we investigate the contribution of TEO, the architectonically defined region located one step earlier than area TE in the ventral stream. Bilateral removal of TEO caused only a mild impairment in categorization. However, combined TE + TEO removal was followed by a severe, long-lasting impairment in categorization. All of the monkeys tested, including those with combined TE + TEO removals, had normal low-level visual functions, such as visual acuity. These results support the conclusion that categorization based on visual similarity is processed in parallel in TE and TEO.


Asunto(s)
Macaca mulatta , Lóbulo Temporal , Vías Visuales , Animales , Lóbulo Temporal/diagnóstico por imagen , Vías Visuales/diagnóstico por imagen
7.
J Neurosci ; 40(8): 1668-1678, 2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-31941667

RESUMEN

Understanding the neural code requires understanding how populations of neurons code information. Theoretical models predict that information may be limited by correlated noise in large neural populations. Nevertheless, analyses based on tens of neurons have failed to find evidence of saturation. Moreover, some studies have shown that noise correlations can be very small, and therefore may not affect information coding. To determine whether information-limiting correlations exist, we implanted eight Utah arrays in prefrontal cortex (PFC; area 46) of two male macaque monkeys, recording >500 neurons simultaneously. We estimated information in PFC about saccades as a function of ensemble size. Noise correlations were, on average, small (∼10-3). However, information scaled strongly sublinearly with ensemble size. After shuffling trials, destroying noise correlations, information was a linear function of ensemble size. Thus, we provide evidence for the existence of information-limiting noise correlations in large populations of PFC neurons.SIGNIFICANCE STATEMENT Recent theoretical work has shown that even small correlations can limit information if they are "differential correlations," which are difficult to measure directly. However, they can be detected through decoding analyses on recordings from a large number of neurons over a large number of trials. We have achieved both by collecting neural activity in dorsal-lateral prefrontal cortex of macaques using eight microelectrode arrays (768 electrodes), from which we were able to compute accurate information estimates. We show, for the first time, strong evidence for information-limiting correlations. Despite pairwise correlations being small (on the order of 10-3), they affect information coding in populations on the order of 100 s of neurons.


Asunto(s)
Modelos Neurológicos , Red Nerviosa/fisiología , Neuronas/fisiología , Corteza Prefrontal/fisiología , Potenciales de Acción/fisiología , Animales , Macaca mulatta , Masculino , Microelectrodos , Estimulación Luminosa , Movimientos Sacádicos/fisiología
8.
Neuroimage ; 230: 117778, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33497775

RESUMEN

Information from Magnetic Resonance Imaging (MRI) is useful for diagnosis and treatment management of human neurological patients. MRI monitoring might also prove useful for non-human animals involved in neuroscience research provided that MRI is available and feasible and that there are no MRI contra-indications precluding scanning. However, MRI monitoring is not established in macaques and a resource is urgently needed that could grow with scientific community contributions. Here we show the utility and potential benefits of MRI-based monitoring in a few diverse cases with macaque monkeys. We also establish a PRIMatE MRI Monitoring (PRIME-MRM) resource within the PRIMatE Data Exchange (PRIME-DE) and quantitatively compare the cases to normative information drawn from MRI data from typical macaques in PRIME-DE. In the cases, the monkeys presented with no or mild/moderate clinical signs, were well otherwise and MRI scanning did not present a significant increase in welfare impact. Therefore, they were identified as suitable candidates for clinical investigation, MRI-based monitoring and treatment. For each case, we show MRI quantification of internal controls in relation to treatment steps and comparisons with normative data in typical monkeys drawn from PRIME-DE. We found that MRI assists in precise and early diagnosis of cerebral events and can be useful for visualising, treating and quantifying treatment response. The scientific community could now grow the PRIME-MRM resource with other cases and larger samples to further assess and increase the evidence base on the benefits of MRI monitoring of primates, complementing the animals' clinical monitoring and treatment regime.


Asunto(s)
Encéfalo/diagnóstico por imagen , Análisis de Datos , Imagen por Resonancia Magnética/métodos , Enfermedades del Sistema Nervioso/diagnóstico por imagen , Animales , Estudios de Casos y Controles , Enfermedades Desmielinizantes/diagnóstico por imagen , Enfermedades Desmielinizantes/terapia , Infecciones/diagnóstico por imagen , Infecciones/terapia , Macaca mulatta , Masculino , Debilidad Muscular/diagnóstico por imagen , Debilidad Muscular/terapia , Enfermedades del Sistema Nervioso/terapia
9.
PLoS Comput Biol ; 16(4): e1007514, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32330126

RESUMEN

Learning leads to changes in population patterns of neural activity. In this study we wanted to examine how these changes in patterns of activity affect the dimensionality of neural responses and information about choices. We addressed these questions by carrying out high channel count recordings in dorsal-lateral prefrontal cortex (dlPFC; 768 electrodes) while monkeys performed a two-armed bandit reinforcement learning task. The high channel count recordings allowed us to study population coding while monkeys learned choices between actions or objects. We found that the dimensionality of neural population activity was higher across blocks in which animals learned the values of novel pairs of objects, than across blocks in which they learned the values of actions. The increase in dimensionality with learning in object blocks was related to less shared information across blocks, and therefore patterns of neural activity that were less similar, when compared to learning in action blocks. Furthermore, these differences emerged with learning, and were not a simple function of the choice of a visual image or action. Therefore, learning the values of novel objects increases the dimensionality of neural representations in dlPFC.


Asunto(s)
Mapeo Encefálico , Aprendizaje/fisiología , Neuronas/fisiología , Corteza Prefrontal/fisiología , Algoritmos , Animales , Electrodos , Movimientos Oculares , Procesamiento de Imagen Asistido por Computador , Luz , Macaca , Masculino , Microelectrodos , Estimulación Luminosa , Refuerzo en Psicología , Recompensa , Movimientos Sacádicos
10.
Cereb Cortex ; 27(1): 809-840, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-26620266

RESUMEN

In the ventral stream of the primate auditory cortex, cortico-cortical projections emanate from the primary auditory cortex (AI) along 2 principal axes: one mediolateral, the other caudorostral. Connections in the mediolateral direction from core, to belt, to parabelt, have been well described, but less is known about the flow of information along the supratemporal plane (STP) in the caudorostral dimension. Neuroanatomical tracers were injected throughout the caudorostral extent of the auditory core and rostral STP by direct visualization of the cortical surface. Auditory cortical areas were distinguished by SMI-32 immunostaining for neurofilament, in addition to established cytoarchitectonic criteria. The results describe a pathway comprising step-wise projections from AI through the rostral and rostrotemporal fields of the core (R and RT), continuing to the recently identified rostrotemporal polar field (RTp) and the dorsal temporal pole. Each area was strongly and reciprocally connected with the areas immediately caudal and rostral to it, though deviations from strictly serial connectivity were observed. In RTp, inputs converged from core, belt, parabelt, and the auditory thalamus, as well as higher order cortical regions. The results support a rostrally directed flow of auditory information with complex and recurrent connections, similar to the ventral stream of macaque visual cortex.


Asunto(s)
Corteza Auditiva/citología , Animales , Vías Auditivas/citología , Femenino , Macaca mulatta , Masculino , Técnicas de Trazados de Vías Neuroanatómicas , Neuronas/citología
11.
Proc Natl Acad Sci U S A ; 112(21): E2820-8, 2015 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-25964365

RESUMEN

In vivo tractography based on diffusion magnetic resonance imaging (dMRI) has opened new doors to study structure-function relationships in the human brain. Initially developed to map the trajectory of major white matter tracts, dMRI is used increasingly to infer long-range anatomical connections of the cortex. Because axonal projections originate and terminate in the gray matter but travel mainly through the deep white matter, the success of tractography hinges on the capacity to follow fibers across this transition. Here we demonstrate that the complex arrangement of white matter fibers residing just under the cortical sheet poses severe challenges for long-range tractography over roughly half of the brain. We investigate this issue by comparing dMRI from very-high-resolution ex vivo macaque brain specimens with histological analysis of the same tissue. Using probabilistic tracking from pure gray and white matter seeds, we found that ∼50% of the cortical surface was effectively inaccessible for long-range diffusion tracking because of dense white matter zones just beneath the infragranular layers of the cortex. Analysis of the corresponding myelin-stained sections revealed that these zones colocalized with dense and uniform sheets of axons running mostly parallel to the cortical surface, most often in sulcal regions but also in many gyral crowns. Tracer injection into the sulcal cortex demonstrated that at least some axonal fibers pass directly through these fiber systems. Current and future high-resolution dMRI studies of the human brain will need to develop methods to overcome the challenges posed by superficial white matter systems to determine long-range anatomical connections accurately.


Asunto(s)
Imagen de Difusión Tensora/métodos , Macaca mulatta/anatomía & histología , Sustancia Blanca/anatomía & histología , Animales , Corteza Cerebral/anatomía & histología , Conectoma/métodos , Conectoma/estadística & datos numéricos , Bases de Datos Factuales , Imagen de Difusión Tensora/estadística & datos numéricos , Sustancia Gris/anatomía & histología , Humanos , Imagenología Tridimensional , Masculino , Modelos Neurológicos , Vías Nerviosas/anatomía & histología
12.
J Neurosci ; 36(1): 43-53, 2016 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-26740648

RESUMEN

In primates, visual recognition of complex objects depends on the inferior temporal lobe. By extension, categorizing visual stimuli based on similarity ought to depend on the integrity of the same area. We tested three monkeys before and after bilateral anterior inferior temporal cortex (area TE) removal. Although mildly impaired after the removals, they retained the ability to assign stimuli to previously learned categories, e.g., cats versus dogs, and human versus monkey faces, even with trial-unique exemplars. After the TE removals, they learned in one session to classify members from a new pair of categories, cars versus trucks, as quickly as they had learned the cats versus dogs before the removals. As with the dogs and cats, they generalized across trial-unique exemplars of cars and trucks. However, as seen in earlier studies, these monkeys with TE removals had difficulty learning to discriminate between two simple black and white stimuli. These results raise the possibility that TE is needed for memory of simple conjunctions of basic features, but that it plays only a small role in generalizing overall configural similarity across a large set of stimuli, such as would be needed for perceptual categorical assignment. SIGNIFICANCE STATEMENT: The process of seeing and recognizing objects is attributed to a set of sequentially connected brain regions stretching forward from the primary visual cortex through the temporal lobe to the anterior inferior temporal cortex, a region designated area TE. Area TE is considered the final stage for recognizing complex visual objects, e.g., faces. It has been assumed, but not tested directly, that this area would be critical for visual generalization, i.e., the ability to place objects such as cats and dogs into their correct categories. Here, we demonstrate that monkeys rapidly and seemingly effortlessly categorize large sets of complex images (cats vs dogs, cars vs trucks), surprisingly, even after removal of area TE, leaving a puzzle about how this generalization is done.


Asunto(s)
Red Nerviosa/fisiopatología , Trastornos de la Percepción/fisiopatología , Desempeño Psicomotor , Lóbulo Temporal/fisiopatología , Trastornos de la Visión/fisiopatología , Percepción Visual , Animales , Macaca mulatta , Masculino , Índice de Severidad de la Enfermedad , Lóbulo Temporal/cirugía
13.
Eur J Neurosci ; 43(8): 1044-61, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26855336

RESUMEN

The origins of the hippocampal (subicular) projections to the anterior thalamic nuclei and mammillary bodies were compared in rats and macaque monkeys using retrograde tracers. These projections form core components of the Papez circuit, which is vital for normal memory. The study revealed a complex pattern of subicular efferents, consistent with the presence of different, parallel information streams, whose segregation appears more marked in the rat brain. In both species, the cells projecting to the mammillary bodies and anterior thalamic nuclei showed laminar separation but also differed along other hippocampal axes. In the rat, these diencephalic inputs showed complementary topographies in the proximal-distal (columnar) plane, consistent with differential involvement in object-based (proximal subiculum) and context-based (distal subiculum) information. The medial mammillary inputs, which arose along the anterior-posterior extent of the rat subiculum, favoured the central subiculum (septal hippocampus) and the more proximal subiculum (temporal hippocampus). In contrast, anterior thalamic inputs were largely confined to the dorsal (i.e. septal and intermediate) subiculum, where projections to the anteromedial nucleus favoured the proximal subiculum while those to the anteroventral nucleus predominantly arose in the distal subiculum. In the macaque, the corresponding diencephalic inputs were again distinguished by anterior-posterior topographies, as subicular inputs to the medial mammillary bodies predominantly arose from the posterior hippocampus while subicular inputs to the anteromedial thalamic nucleus predominantly arose from the anterior hippocampus. Unlike the rat, there was no clear evidence of proximal-distal separation as all of these medial diencephalic projections preferentially arose from the more distal subiculum.


Asunto(s)
Núcleos Talámicos Anteriores/anatomía & histología , Hipocampo/anatomía & histología , Tubérculos Mamilares/anatomía & histología , Animales , Macaca fascicularis , Macaca mulatta , Masculino , Vías Nerviosas/anatomía & histología , Ratas , Especificidad de la Especie
14.
Nature ; 466(7304): 373-7, 2010 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-20574422

RESUMEN

Injury to the primary visual cortex (V1) leads to the loss of visual experience. Nonetheless, careful testing shows that certain visually guided behaviours can persist even in the absence of visual awareness. The neural circuits supporting this phenomenon, which is often termed blindsight, remain uncertain. Here we demonstrate that the thalamic lateral geniculate nucleus (LGN) has a causal role in V1-independent processing of visual information. By comparing functional magnetic resonance imaging (fMRI) and behavioural measures with and without temporary LGN inactivation, we assessed the contribution of the LGN to visual functions of macaque monkeys (Macaca mulatta) with chronic V1 lesions. Before LGN inactivation, high-contrast stimuli presented to the lesion-affected visual field (scotoma) produced significant V1-independent fMRI activation in the extrastriate cortical areas V2, V3, V4, V5/middle temporal (MT), fundus of the superior temporal sulcus (FST) and lateral intraparietal area (LIP) and the animals correctly located the stimuli in a detection task. However, following reversible inactivation of the LGN in the V1-lesioned hemisphere, fMRI responses and behavioural detection were abolished. These results demonstrate that direct LGN projections to the extrastriate cortex have a critical functional contribution to blindsight. They suggest a viable pathway to mediate fast detection during normal vision.


Asunto(s)
Cuerpos Geniculados/fisiología , Macaca mulatta/fisiología , Vías Visuales/fisiología , Percepción Visual/fisiología , Animales , Femenino , Cuerpos Geniculados/fisiopatología , Masculino , Modelos Neurológicos , Estimulación Luminosa , Corteza Visual/fisiología , Corteza Visual/fisiopatología , Vías Visuales/fisiopatología
15.
Cereb Cortex ; 25(11): 4351-73, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25715284

RESUMEN

The projections from the amygdala and hippocampus (including subiculum and presubiculum) to prefrontal cortex were compared using anterograde tracers injected into macaque monkeys (Macaca fascicularis, Macaca mulatta). Almost all prefrontal areas were found to receive some amygdala inputs. These connections, which predominantly arose from the intermediate and magnocellular basal nucleus, were particularly dense in parts of the medial and orbital prefrontal cortex. Contralateral inputs were not, however, observed. The hippocampal projections to prefrontal areas were far more restricted, being confined to the ipsilateral medial and orbital prefrontal cortex (within areas 11, 13, 14, 24a, 32, and 25). These hippocampal projections principally arose from the subiculum, with the fornix providing the sole route. Thus, while the lateral prefrontal cortex essentially receives only amygdala inputs, the orbital prefrontal cortex receives both amygdala and hippocampal inputs, though these typically target different areas. Only in medial prefrontal cortex do direct inputs from both structures terminate in common sites. But, even when convergence occurs within an area, the projections predominantly terminate in different lamina (hippocampal inputs to layer III and amygdala inputs to layers I, II, and VI). The resulting segregation of prefrontal inputs could enable the parallel processing of different information types in prefrontal cortex.


Asunto(s)
Amígdala del Cerebelo/fisiología , Mapeo Encefálico , Hipocampo/fisiología , Corteza Prefrontal/fisiología , Aminoácidos/metabolismo , Animales , Autorradiografía , Estudios de Cohortes , Femenino , Lateralidad Funcional , Macaca fascicularis , Macaca mulatta , Masculino , Vías Nerviosas/fisiología
16.
Proc Natl Acad Sci U S A ; 110(42): 17095-100, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24085849

RESUMEN

Illusory figures demonstrate the visual system's ability to infer surfaces under conditions of fragmented sensory input. To investigate the role of midlevel visual area V4 in visual surface completion, we used multielectrode arrays to measure spiking responses to two types of visual stimuli: Kanizsa patterns that induce the perception of an illusory surface and physically similar control stimuli that do not. Neurons in V4 exhibited stronger and sometimes rhythmic spiking responses for the illusion-promoting configurations compared with controls. Moreover, this elevated response depended on the precise alignment of the neuron's peak visual field sensitivity (receptive field focus) with the illusory surface itself. Neurons whose receptive field focus was over adjacent inducing elements, less than 1.5° away, did not show response enhancement to the illusion. Neither receptive field sizes nor fixational eye movements could account for this effect, which was present in both single-unit signals and multiunit activity. These results suggest that the active perceptual completion of surfaces and shapes, which is a fundamental problem in natural visual experience, draws upon the selective enhancement of activity within a distinct subpopulation of neurons in cortical area V4.


Asunto(s)
Neuronas/fisiología , Ilusiones Ópticas/fisiología , Corteza Visual/fisiología , Percepción Visual/fisiología , Animales , Femenino , Macaca mulatta , Neuronas/citología , Corteza Visual/citología
17.
J Neurosci ; 34(13): 4665-76, 2014 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-24672012

RESUMEN

The mammalian auditory cortex integrates spectral and temporal acoustic features to support the perception of complex sounds, including conspecific vocalizations. Here we investigate coding of vocal stimuli in different subfields in macaque auditory cortex. We simultaneously measured auditory evoked potentials over a large swath of primary and higher order auditory cortex along the supratemporal plane in three animals chronically using high-density microelectrocorticographic arrays. To evaluate the capacity of neural activity to discriminate individual stimuli in these high-dimensional datasets, we applied a regularized multivariate classifier to evoked potentials to conspecific vocalizations. We found a gradual decrease in the level of overall classification performance along the caudal to rostral axis. Furthermore, the performance in the caudal sectors was similar across individual stimuli, whereas the performance in the rostral sectors significantly differed for different stimuli. Moreover, the information about vocalizations in the caudal sectors was similar to the information about synthetic stimuli that contained only the spectral or temporal features of the original vocalizations. In the rostral sectors, however, the classification for vocalizations was significantly better than that for the synthetic stimuli, suggesting that conjoined spectral and temporal features were necessary to explain differential coding of vocalizations in the rostral areas. We also found that this coding in the rostral sector was carried primarily in the theta frequency band of the response. These findings illustrate a progression in neural coding of conspecific vocalizations along the ventral auditory pathway.


Asunto(s)
Corteza Auditiva/fisiología , Vías Auditivas/fisiología , Mapeo Encefálico , Potenciales Evocados Auditivos/fisiología , Vocalización Animal/fisiología , Estimulación Acústica , Análisis de Varianza , Animales , Discriminación en Psicología , Electrodos Implantados , Macaca mulatta , Masculino , Psicoacústica
18.
J Neurosci ; 34(35): 11857-64, 2014 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-25164679

RESUMEN

The local field potential (LFP) in visual cortex is typically characterized by the following spectral pattern: before the onset of a visual stimulus, low-frequency oscillations (beta, 12-20 Hz) dominate, whereas during the presentation of a stimulus these oscillations diminish and are replaced by fluctuations at higher frequencies (gamma, >30 Hz). The origin of beta oscillations in vivo remains unclear, as is the basis of their suppression during visual stimulation. Here we investigate the contribution of ascending input from primary visual cortex (V1) to beta oscillation dynamics in extrastriate visual area V4 of behaving monkeys. We recorded LFP activity in V4 before and after resecting a portion of V1. After the surgery, the visually induced gamma LFP activity in the lesion projection zone of V4 was markedly reduced, consistent with previously reported spiking responses (Schmid et al., 2013). In the beta LFP range, the lesion had minimal effect on the normal pattern of spontaneous oscillations. However, the lesion led to a surprising and permanent reversal of the normal beta suppression during visual stimulation, with visual stimuli eliciting beta magnitude increases up to 50%, particularly in response to moving stimuli. This reversed beta activity pattern was specific to stimulus locations affected by the V1 lesion. Our results shed light on the mechanisms of beta activity in extrastriate visual cortex: The preserved spontaneous oscillations point to a generation mechanism independent of the geniculostriate pathway, whereas the positive beta responses support the contribution of visual information to V4 via direct thalamo-extrastriate projections.


Asunto(s)
Potenciales Evocados Visuales/fisiología , Corteza Visual/fisiología , Vías Visuales/fisiología , Animales , Relojes Biológicos/fisiología , Electroencefalografía , Femenino , Macaca mulatta , Estimulación Luminosa
19.
J Neurosci ; 33(48): 18740-5, 2013 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-24285880

RESUMEN

Neurons in cortical ventral-stream area V4 are thought to contribute to important aspects of visual processing by integrating information from primary visual cortex (V1). However, how V4 neurons respond to visual stimulation after V1 injury remains unclear: While electrophysiological investigation of V4 neurons during reversible V1 inactivation suggests that virtually all responses are eliminated (Girard et al., 1991), fMRI in humans and monkeys with permanent lesions shows reliable V1-independent activity (Baseler et al., 1999; Goebel et al., 2001; Schmid et al., 2010). To resolve this apparent discrepancy, we longitudinally assessed neuronal functions of macaque area V4 using chronically implanted electrode arrays before and after creating a permanent aspiration lesion in V1. During the month after lesioning, we observed weak yet significant spiking activity in response to stimuli presented to the lesion-affected part of the visual field. These V1-independent responses showed sensitivity for motion and likely reflect the effect of V1-bypassing geniculate input into extrastriate areas.


Asunto(s)
Percepción de Movimiento/fisiología , Corteza Visual/fisiología , Algoritmos , Animales , Ceguera/psicología , Interpretación Estadística de Datos , Fenómenos Electrofisiológicos , Movimientos Oculares/fisiología , Femenino , Fijación Ocular , Estudios Longitudinales , Macaca mulatta , Imagen por Resonancia Magnética , Estimulación Luminosa , Desempeño Psicomotor/fisiología , Escotoma/fisiopatología , Percepción Espacial/fisiología , Vías Visuales/fisiología , Percepción Visual/fisiología
20.
Eur J Neurosci ; 39(1): 107-23, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24134130

RESUMEN

Interactions between the posterior cingulate cortex (areas 23 and 31) and the retrosplenial cortex (areas 29 and 30) with the anterior, laterodorsal and dorsal medial thalamic nuclei are thought to support various aspects of cognition, including memory and spatial processing. To detail these interactions better, the present study used retrograde tracers to reveal the origins of the corticothalamic projections in two closely related monkey species (Macaca mulatta, Macaca fascicularis). The medial dorsal thalamic nucleus received only light cortical inputs, which predominantly arose from area 23. Efferents to the anterior medial thalamic nucleus also arose principally from area 23, but these projections proved more numerous than those to the medial dorsal nucleus and also involved additional inputs from areas 29 and 30. The anterior ventral and laterodorsal thalamic nuclei had similar sources of inputs from the posterior cingulate and retrosplenial cortices. For both nuclei, the densest projections arose from areas 29 and 30, with numbers of thalamic inputs often decreasing when going dorsal from area 23a to 23c and to area 31. In all cases, the corticothalamic projections almost always arose from the deepest cortical layer. The different profiles of inputs to the anterior medial and anterior ventral thalamic nuclei reinforce other anatomical and electrophysiological findings suggesting that these adjacent thalamic nuclei serve different, but complementary, functions supporting memory. While the lack of retrosplenial connections singled out the medial dorsal nucleus, the very similar connection patterns shown by the anterior ventral and laterodorsal nuclei point to common roles in cognition.


Asunto(s)
Corteza Cerebral/fisiología , Núcleos Talámicos/fisiología , Animales , Corteza Cerebral/anatomía & histología , Macaca fascicularis , Macaca mulatta , Vías Nerviosas/anatomía & histología , Vías Nerviosas/fisiología , Núcleos Talámicos/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA