RESUMEN
BACKGROUND AND PURPOSE: There are few in vivo data on the pathophysiology of reperfusion during systemic thrombolysis. We monitored the time course of cerebral perfusion changes in patients during thrombolysis with repeated arterial spin labeling perfusion magnetic resonance imaging. METHODS: Ten patients with proximal arterial occlusion within 4.5 hours after symptom onset were prospectively enrolled. All patients received intravenous thrombolysis during the magnetic resonance imaging examination. Repeated arterial spin labeling perfusion images were acquired during the 60-minute therapy and at follow-up after 24 to 72 hours. Clinical data, magnetic resonance imaging features, and cerebral perfusion changes were analyzed. RESULTS: Before thrombolysis, arterial spin labeling hypoperfusion and fluid-attenuation inversion recovery vascular hyperintensity in the territory of the occluded arteries were observed in all patients. In 5 patients, extensive arterial transit artifacts (ATA) developed in the hypoperfused area. The ATA corresponded with fluid-attenuation inversion recovery vascular hyperintensities. All 5 patients who developed extensive ATA in the hypoperfused area had complete reperfusion after thrombolysis, whereas the 5 without extensive ATA showed no or only partial reperfusion (P<0.01). The development of ATA preceded the normalization of tissue perfusion. CONCLUSIONS: The development of ATA during thrombolysis is associated with early reperfusion after thrombolysis. arterial spin labeling assessment during intravenous thrombolysis has the potential to guide subsequent therapeutic strategies in patients with acute stroke.
Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Imagen por Resonancia Magnética/métodos , Reperfusión/métodos , Marcadores de Spin , Accidente Cerebrovascular/tratamiento farmacológico , Terapia Trombolítica/métodos , Anciano , Anciano de 80 o más Años , Isquemia Encefálica/diagnóstico , Circulación Cerebrovascular/fisiología , Femenino , Fibrinolíticos/administración & dosificación , Estudios de Seguimiento , Humanos , Infusiones Intravenosas , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Estudios Prospectivos , Accidente Cerebrovascular/diagnósticoRESUMEN
Objective: Although sepsis and delayed cerebral ischemia (DCI) are severe complications in patients with aneurysmal subarachnoid hemorrhage (aSAH) and share pathophysiological features, their interrelation and additive effect on functional outcome is uncertain. We investigated the association between sepsis and DCI and their cumulative effect on functional outcome in patients with aSAH using current sepsis-3 definition. Methods: Patients admitted to our hospital between 11/2014 and 11/2018 for aSAH were retrospectively analyzed. The main explanatory variable was sepsis, diagnosed using sepsis-3 criteria. Endpoints were DCI and functional outcome at hospital discharge (modified Rankin Scale (mRS) 0-3 vs. 4-6). Propensity score matching (PSM) and multivariable logistic regressions were performed. Results: Of 238 patients with aSAH, 55 (23.1%) developed sepsis and 74 (31.1%) DCI. After PSM, aSAH patients with sepsis displayed significantly worse functional outcome (p < 0.01) and longer ICU stay (p = 0.046). Sepsis was independently associated with DCI (OR = 2.46, 95%CI: 1.28-4.72, p < 0.01). However, after exclusion of patients who developed sepsis before (OR = 1.59, 95%CI: 0.78-3.24, p = 0.21) or after DCI (OR = 0.85, 95%CI: 0.37-1.95, p = 0.70) this statistical association did not remain. Good functional outcome gradually decreased from 56.3% (76/135) in patients with neither sepsis nor DCI, to 43.8% (21/48) in those with no sepsis but DCI, to 34.5% (10/29) with sepsis but no DCI and to 7.7% (2/26) in patients with both sepsis and DCI. Conclusion: Our study demonstrates a strong association between sepsis, DCI and functional outcome in patients with aSAH and suggests a complex interplay resulting in a cumulative effect towards poor functional outcome, which warrants further studies.
RESUMEN
BACKGROUND: Early recanalization and increase in collateral blood supply are powerful predictors of favourable outcome in acute ischaemic stroke. The factors contributing to the heterogeneous response to intravenous thrombolysis therapy in individual patients, however, are not fully understood. The on-going single-centre 'MR perfusion imaging during thrombolysis' study uses repetitive arterial spin labelling (ASL) measurements to characterize the haemodynamic processes in acute stroke during therapy. The first milestone was to develop an appropriate infrastructure for thrombolysis in the magnetic resonance imaging (MRI) scanner without time delay and ensuring optimal patient safety and care. METHODS: Between February and December 2011, 16 patients with acute neurological symptoms suggestive of hemispheric stroke within 4.5 h after symptom onset were included. In addition to clinical data, we documented the time from onset to arrival at the hospital, start and duration of MRI examination, start of thrombolytic therapy, and complications. The decision to thrombolyse was made after a routine stroke MRI protocol. During the 60-min systemic thrombolysis, repetitive ASL perfusion imaging was acquired, providing non-invasive information on cerebral perfusion. Continuous ECG monitoring, pulse oximetry, blood pressure measurements every 5 min, and short neurological assessments every 15 min were performed in every patient. RESULTS: The median initial NIHSS score of the patients presenting with a mean of 84 min after onset was 4 (range 2-18). MRI examination was initiated within a mean of 45 min after arrival at the hospital. Five patients identified as stroke mimics were not treated with recombinant tissue plasminogen activator (rt-PA), and in 1 case with basilar artery occlusion bridging therapy was performed outside the scanner. In the remaining 10 patients, rt-PA therapy was started in the scanner directly after decision making on the basis of clinical information and baseline MRI. The mean door-to-needle time was 60 min (range 44-115) including approximately 10 min needed for acquiring informed consent. While 4 patients required antihypertensive treatment, no relevant complications were encountered. CONCLUSIONS: Fast and safe medical care in patients during systemic thrombolysis in the MRI scanner is feasible. Despite the process of obtaining informed consent, with a dedicated and experienced stroke team the door-to-needle time can be kept in a range recommended by current guidelines. Continuous real-time information about the dynamics of cerebral perfusion from ASL perfusion in acute stroke patients undergoing thrombolysis may provide additional information for the understanding of the events following acute arterial obstruction and its course.
Asunto(s)
Isquemia Encefálica/patología , Imagen por Resonancia Magnética , Imagen de Perfusión , Accidente Cerebrovascular/patología , Terapia Trombolítica , Encéfalo/irrigación sanguínea , Encéfalo/fisiopatología , Isquemia Encefálica/diagnóstico por imagen , Isquemia Encefálica/terapia , Humanos , Angiografía por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/métodos , Radiografía , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/terapia , Terapia Trombolítica/métodos , Resultado del TratamientoRESUMEN
Data on sepsis in patients with a subarachnoid hemorrhage (SAH) are scarce. We assessed the impact of different sepsis criteria on the outcome in an SAH cohort. Adult patients admitted to our ICU with a spontaneous SAH between 11/2014 and 11/2018 were retrospectively included. In patients developing an infection, different criteria for sepsis diagnosis (Sepsis-1, Sepsis-3_original, Sepsis-3_modified accounting for SAH-specific therapy, alternative sepsis criteria compiled of consensus conferences) were applied and their impact on functional outcome using the modified Rankin Scale (mRS) on hospital discharge and in-hospital mortality was evaluated. Of 270 SAH patients, 129 (48%) developed an infection. Depending on the underlying criteria, the incidence of sepsis and septic shock ranged between 21-46% and 9-39%. In multivariate logistic regression, the Sepsis-1 criteria were not associated with the outcome. The Sepsis-3 criteria were not associated with the functional outcome, but in shock with mortality. Alternative sepsis criteria were associated with mortality for sepsis and in shock with mortality and the functional outcome. While Sepsis-1 criteria were irrelevant for the outcome in SAH patients, septic shock, according to the Sepsis-3 criteria, adversely impacted survival. This impact was higher for the modified Sepsis-3 criteria, accounting for SAH-specific treatment. Modified Sepsis-3 and alternative sepsis criteria diagnosed septic conditions of a higher relevance for outcomes in patients with an SAH.