Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(21): e202401344, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38422378

RESUMEN

The development of high-performance photocatalytic systems for CO2 reduction is appealing to address energy and environmental issues, while it is challenging to avoid using toxic metals and organic sacrificial reagents. We here immobilize a family of cobalt phthalocyanine catalysts on Pb-free halide perovskite Cs2AgBiBr6 nanosheets with delicate control on the anchors of the cobalt catalysts. Among them, the molecular hybrid photocatalyst assembled by carboxyl anchors achieves the optimal performance with an electron consumption rate of 300±13 µmol g-1 h-1 for visible-light-driven CO2-to-CO conversion coupled with water oxidation to O2, over 8 times of the unmodified Cs2AgBiBr6 (36±8 µmol g-1 h-1), also far surpassing the documented systems (<150 µmol g-1 h-1). Besides the improved intrinsic activity, electrochemical, computational, ex-/in situ X-ray photoelectron and X-ray absorption spectroscopic results indicate that the electrons photogenerated at the Bi atoms of Cs2AgBiBr6 can be directionally transferred to the cobalt catalyst via the carboxyl anchors which strongly bind to the Bi atoms, substantially facilitating the interfacial electron transfer kinetics and thereby the photocatalysis.

2.
JACS Au ; 4(3): 1142-1154, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38559734

RESUMEN

Herein, we show that the reaction of a mononuclear FeIII(OH) complex (1) with N-tosyliminobenzyliodinane (PhINTs) resulted in the formation of a FeIV(OH) species (3). The obtained complex 3 was characterized by an array of spectroscopic techniques and represented a rare example of a synthetic FeIV(OH) complex. The reaction of 1 with the one-electron oxidizing agent was reported to form a ligand-oxidized FeIII(OH) complex (2). 3 revealed a one-electron reduction potential of -0.22 V vs Fc+/Fc at -15 °C, which was 150 mV anodically shifted than 2 (Ered = -0.37 V vs Fc+/Fc at -15 °C), inferring 3 to be more oxidizing than 2. 3 reacted spontaneously with (4-OMe-C6H4)3C• to form (4-OMe-C6H4)3C(OH) through rebound of the OH group and displayed significantly faster reactivity than 2. Further, activation of the hydrocarbon C-H and the phenolic O-H bond by 2 and 3 was compared and showed that 3 is a stronger oxidant than 2. A detailed kinetic study established the occurrence of a concerted proton-electron transfer/hydrogen atom transfer reaction of 3. Studying one-electron reduction of 2 and 3 using decamethylferrocene (Fc*) revealed a higher ket of 3 than 2. The study established that the primary coordination sphere around Fe and the redox state of the metal center is very crucial in controlling the reactivity of high-valent Fe-OH complexes. Further, a FeIII(OMe) complex (4) was synthesized and thoroughly characterized, including X-ray structure determination. The reaction of 4 with PhINTs resulted in the formation of a FeIV(OMe) species (5), revealing the presence of two FeIV species with isomer shifts of -0.11 mm/s and = 0.17 mm/s in the Mössbauer spectrum and showed FeIV/FeIII potential at -0.36 V vs Fc+/Fc couple in acetonitrile at -15 °C. The reactivity studies of 5 were investigated and compared with the FeIV(OH) complex (3).

3.
Chem Commun (Camb) ; 60(73): 9934-9937, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39072688

RESUMEN

A CuII complex (1) of a bis-pyridine-dioxime ligand and its one-electron oxidized analog (1-ox) were thoroughly characterized by various spectroscopic techniques, including X-ray absorption spectroscopy. 1-ox was found to be a CuII complex of a ligand iminoxyl radical and represents the first example of such a type. Reorganization energy (λ) of 2.12 eV was determined for the 1-ox/1 couple, which is considerably higher than the type 1 protein and synthetic CuIII/II(OH) complexes.

4.
Membranes (Basel) ; 12(11)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36422151

RESUMEN

The hydrolytic stability of ionomer membranes is a matter of concern for the long-term durability of energy storage and conversion devices. Various reinforcement strategies exist for the improvement of the performances of the overall membrane. We propose in this article the stabilization of membranes based on aromatic ion conducting polymers (SPEEK and SPPSU) by the introduction of an electrospun mat of inexpensive PPSU polymer. Characterization data from hydrolytic stability (mass uptake and dimension change) and from mechanical and conductivity measurements show an improved stability of membranes in phosphate buffer, used for enzymatic fuel cells, and in distilled water. The synergistic effect of the reinforcement, together with the casting solvent and the thermal treatment or blending polymers, is promising for the realization of high stability ionomer membranes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA