Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nanotoxicology ; 8(5): 477-84, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23586422

RESUMEN

Nanoparticles (NPs) have been shown to induce dispersal events in microbial biofilms but the mechanism of the dispersal is unknown. Biofilms contaminate many man-made aquatic systems such as cooling towers, spas and dental lines. Within these biofilms, Legionella pneumophila is a primary pathogen, leading to these environments serving as sources for disease outbreaks. Here we show a reduction in biofilm bio-volume upon treatment with citrate-coated 6-nm platinum NPs, polyethylene glycol (PEG)-coated 11-nm gold NPs, and PEG-coated 8-nm iron oxide NPs. Treatment with citrate-coated 8-nm silver NPs, however, did not reduce biomass. The synthesis of NPs that remain dispersed and resist irreversible aggregation in the exposure media appears to be a key factor in the ability of NPs to induce biofilm dispersal.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Legionella pneumophila/efectos de los fármacos , Nanopartículas del Metal/química , Análisis de Varianza , Antibacterianos/química , Recuento de Colonia Microbiana , Oro/química , Oro/farmacología , Nanopartículas de Magnetita/química
2.
J Colloid Interface Sci ; 424: 141-51, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24767510

RESUMEN

The design and application of magnetic nanoparticles for use as magnetic hyperthermia agents has garnered increasing interest over the past several years. When designing these systems, the fundamentals of particle design play a key role in the observed specific absorption rate (SAR). This includes the particle's core size, polymer brush length, and colloidal arrangement. While the role of particle core size on the observed SAR has been significantly reported, the role of the polymer brush length has not attracted as much attention. It has recently been reported that for some suspensions linear aggregates form in the presence of an applied external magnetic field, i.e. chains of magnetic particles. The formation of these chains may have the potential for a dramatic impact on the biomedical application of these materials, specifically the efficiency of the particles to transfer magnetic energy to the surrounding cells. In this study we demonstrate the dependence of SAR on magnetite nanoparticle core size and brush length as well as observe the formation of magnetically induced colloidal arrangements. Colloidally stable magnetic nanoparticles were demonstrated to form linear aggregates in an alternating magnetic field. The length and distribution of the aggregates were dependent upon the stabilizing polymer molecular weight. As the molecular weight of the stabilizing layer increased, the magnetic interparticle interactions decreased therefore limiting chain formation. In addition, theoretical calculations demonstrated that interparticle spacing has a significant impact on the magnetic behavior of these materials. This work has several implications for the design of nanoparticle and magnetic hyperthermia systems, while improving understanding of how colloidal arrangement affects SAR.


Asunto(s)
Coloides/química , Hipertermia Inducida/instrumentación , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/ultraestructura , Polímeros/química , Anisotropía , Diseño de Equipo , Campos Magnéticos , Tamaño de la Partícula
3.
Nanoscale ; 5(5): 2152-63, 2013 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-23389324

RESUMEN

It has been recently reported that for some suspensions of magnetic nanoparticles the transverse proton relaxation rate, R(2), is dependent on the time that the sample is exposed to an applied magnetic field. This time dependence has been linked to the formation of linear aggregates or chains in an applied magnetic field via numerical modeling. It is widely known that chain formation occurs in more concentrated ferrofluids systems and that this has an affect on the ferrofluid properties. In this work we examine the relationships between colloidal stability, the formation of these linear structures, and changes observed in the proton transverse relaxation rate of aqueous suspensions of magnetic particles. A series of iron oxide nanoparticles with varying stabilizing ligand brush lengths were synthesized. These systems were characterized with dynamic light scattering, transmission electron microscopy, dark-field optical microscopy, and proton transverse relaxation rate measurements. The dark field optical microscopy and R(2) measurements were made in similar magnetic fields over the same time scale so as to correlate the reduction of the transverse relaxivity with the formation of linear aggregates. Our results indicate that varying the ligand length has a direct effect on the colloidal arrangement of the system in a magnetic field, producing differences in the rate and size of chain formation, and hence systematic changes in transverse relaxation rates over time. With increasing ligand brush length, attractive inter-particle interactions are reduced, which results in slower aggregate formation and shorter linear aggregate length. These results have implications for the stabilization, characterization and potentially the toxicity of magnetic nanoparticle systems used in biomedical applications.


Asunto(s)
Nanopartículas de Magnetita/química , Polietilenglicoles/química , Dihidroxifenilalanina/química , Compuestos Férricos/química , Luz , Magnetismo , Protones , Dispersión de Radiación , Suspensiones , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA