Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39321801

RESUMEN

Pharmaceuticals can directly inhibit the growth of gut bacteria, but the degree to which such interactions manifest in complex community settings is an open question. Here, we compared the effects of 30 drugs on a 32-species synthetic community with their effects on each community member in isolation. While most individual drug-species interactions remained the same in the community context, communal behaviors emerged in 26% of all tested cases. Cross-protection during which drug-sensitive species were protected in community was 6 times more frequent than cross-sensitization, the converse phenomenon. Cross-protection decreased and cross-sensitization increased at higher drug concentrations, suggesting that the resilience of microbial communities can collapse when perturbations get stronger. By metabolically profiling drug-treated communities, we showed that both drug biotransformation and bioaccumulation contribute mechanistically to communal protection. As a proof of principle, we molecularly dissected a prominent case: species expressing specific nitroreductases degraded niclosamide, thereby protecting both themselves and sensitive community members.

2.
Cell ; 186(9): 1877-1894.e27, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37116470

RESUMEN

Negative-stranded RNA viruses can establish long-term persistent infection in the form of large intracellular inclusions in the human host and cause chronic diseases. Here, we uncover how cellular stress disrupts the metastable host-virus equilibrium in persistent infection and induces viral replication in a culture model of mumps virus. Using a combination of cell biology, whole-cell proteomics, and cryo-electron tomography, we show that persistent viral replication factories are dynamic condensates and identify the largely disordered viral phosphoprotein as a driver of their assembly. Upon stress, increased phosphorylation of the phosphoprotein at its interaction interface with the viral polymerase coincides with the formation of a stable replication complex. By obtaining atomic models for the authentic mumps virus nucleocapsid, we elucidate a concomitant conformational change that exposes the viral genome to its replication machinery. These events constitute a stress-mediated switch within viral condensates that provide an environment to support upregulation of viral replication.


Asunto(s)
Virus de la Parotiditis , Infección Persistente , Humanos , Virus de la Parotiditis/fisiología , Nucleocápside , Fosfoproteínas/metabolismo , Replicación Viral
3.
Cell ; 181(7): 1518-1532.e14, 2020 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-32497502

RESUMEN

The rise of antibiotic resistance and declining discovery of new antibiotics has created a global health crisis. Of particular concern, no new antibiotic classes have been approved for treating Gram-negative pathogens in decades. Here, we characterize a compound, SCH-79797, that kills both Gram-negative and Gram-positive bacteria through a unique dual-targeting mechanism of action (MoA) with undetectably low resistance frequencies. To characterize its MoA, we combined quantitative imaging, proteomic, genetic, metabolomic, and cell-based assays. This pipeline demonstrates that SCH-79797 has two independent cellular targets, folate metabolism and bacterial membrane integrity, and outperforms combination treatments in killing methicillin-resistant Staphylococcus aureus (MRSA) persisters. Building on the molecular core of SCH-79797, we developed a derivative, Irresistin-16, with increased potency and showed its efficacy against Neisseria gonorrhoeae in a mouse vaginal infection model. This promising antibiotic lead suggests that combining multiple MoAs onto a single chemical scaffold may be an underappreciated approach to targeting challenging bacterial pathogens.


Asunto(s)
Bacterias Gramnegativas/efectos de los fármacos , Pirroles/metabolismo , Pirroles/farmacología , Quinazolinas/metabolismo , Quinazolinas/farmacología , Animales , Antibacterianos/farmacología , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Farmacorresistencia Bacteriana/efectos de los fármacos , Farmacorresistencia Bacteriana/genética , Femenino , Ácido Fólico/metabolismo , Bacterias Grampositivas/efectos de los fármacos , Células HEK293 , Humanos , Masculino , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Ovariectomía , Proteómica , Pseudomonas aeruginosa/efectos de los fármacos
4.
Cell ; 173(6): 1495-1507.e18, 2018 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-29706546

RESUMEN

Quantitative mass spectrometry has established proteome-wide regulation of protein abundance and post-translational modifications in various biological processes. Here, we used quantitative mass spectrometry to systematically analyze the thermal stability and solubility of proteins on a proteome-wide scale during the eukaryotic cell cycle. We demonstrate pervasive variation of these biophysical parameters with most changes occurring in mitosis and G1. Various cellular pathways and components vary in thermal stability, such as cell-cycle factors, polymerases, and chromatin remodelers. We demonstrate that protein thermal stability serves as a proxy for enzyme activity, DNA binding, and complex formation in situ. Strikingly, a large cohort of intrinsically disordered and mitotically phosphorylated proteins is stabilized and solubilized in mitosis, suggesting a fundamental remodeling of the biophysical environment of the mitotic cell. Our data represent a rich resource for cell, structural, and systems biologists interested in proteome regulation during biological transitions.


Asunto(s)
Ciclo Celular , ADN/análisis , Proteoma/análisis , Proteómica/métodos , Ensamble y Desensamble de Cromatina , Análisis por Conglomerados , Células HeLa , Calor , Humanos , Espectrometría de Masas , Mitosis , Fosforilación , Procesamiento Proteico-Postraduccional , Estabilidad Proteica , ARN Polimerasa II/metabolismo , Solubilidad
5.
Cell ; 173(1): 260-274.e25, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29551266

RESUMEN

Protein degradation plays important roles in biological processes and is tightly regulated. Further, targeted proteolysis is an emerging research tool and therapeutic strategy. However, proteome-wide technologies to investigate the causes and consequences of protein degradation in biological systems are lacking. We developed "multiplexed proteome dynamics profiling" (mPDP), a mass-spectrometry-based approach combining dynamic-SILAC labeling with isobaric mass tagging for multiplexed analysis of protein degradation and synthesis. In three proof-of-concept studies, we uncover different responses induced by the bromodomain inhibitor JQ1 versus a JQ1 proteolysis targeting chimera; we elucidate distinct modes of action of estrogen receptor modulators; and we comprehensively classify HSP90 clients based on their requirement for HSP90 constitutively or during synthesis, demonstrating that constitutive HSP90 clients have lower thermal stability than non-clients, have higher affinity for the chaperone, vary between cell types, and change upon external stimuli. These findings highlight the potential of mPDP to identify dynamically controlled degradation mechanisms in cellular systems.


Asunto(s)
Proteínas HSP90 de Choque Térmico/metabolismo , Proteoma/análisis , Proteómica/métodos , Azepinas/química , Azepinas/metabolismo , Azepinas/farmacología , Línea Celular , Cromatografía Líquida de Alta Presión , Análisis por Conglomerados , Estradiol/farmacología , Humanos , Marcaje Isotópico , Células Jurkat , Células MCF-7 , Proteínas de Neoplasias/metabolismo , Proteínas/antagonistas & inhibidores , Proteínas/metabolismo , Proteolisis/efectos de los fármacos , Receptores de Estrógenos/metabolismo , Espectrometría de Masas en Tándem , Triazoles/química , Triazoles/metabolismo , Triazoles/farmacología
6.
Nature ; 609(7925): 144-150, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35850148

RESUMEN

Retrons are prokaryotic genetic retroelements encoding a reverse transcriptase that produces multi-copy single-stranded DNA1 (msDNA). Despite decades of research on the biosynthesis of msDNA2, the function and physiological roles of retrons have remained unknown. Here we show that Retron-Sen2 of Salmonella enterica serovar Typhimurium encodes an accessory toxin protein, STM14_4640, which we renamed as RcaT. RcaT is neutralized by the reverse transcriptase-msDNA antitoxin complex, and becomes active upon perturbation of msDNA biosynthesis. The reverse transcriptase is required for binding to RcaT, and the msDNA is required for the antitoxin activity. The highly prevalent RcaT-containing retron family constitutes a new type of tripartite DNA-containing toxin-antitoxin system. To understand the physiological roles of such toxin-antitoxin systems, we developed toxin activation-inhibition conjugation (TAC-TIC), a high-throughput reverse genetics approach that identifies the molecular triggers and blockers of toxin-antitoxin systems. By applying TAC-TIC to Retron-Sen2, we identified multiple trigger and blocker proteins of phage origin. We demonstrate that phage-related triggers directly modify the msDNA, thereby activating RcaT and inhibiting bacterial growth. By contrast, prophage proteins circumvent retrons by directly blocking RcaT. Consistently, retron toxin-antitoxin systems act as abortive infection anti-phage defence systems, in line with recent reports3,4. Thus, RcaT retrons are tripartite DNA-regulated toxin-antitoxin systems, which use the reverse transcriptase-msDNA complex both as an antitoxin and as a sensor of phage protein activities.


Asunto(s)
Antitoxinas , Bacteriófagos , Retroelementos , Salmonella typhimurium , Sistemas Toxina-Antitoxina , Antitoxinas/genética , Bacteriófagos/metabolismo , ADN Bacteriano/genética , ADN de Cadena Simple/genética , Conformación de Ácido Nucleico , Profagos/metabolismo , ADN Polimerasa Dirigida por ARN/metabolismo , Retroelementos/genética , Salmonella typhimurium/genética , Salmonella typhimurium/crecimiento & desarrollo , Salmonella typhimurium/virología , Sistemas Toxina-Antitoxina/genética
7.
Nature ; 597(7877): 533-538, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34497420

RESUMEN

Bacteria in the gut can modulate the availability and efficacy of therapeutic drugs. However, the systematic mapping of the interactions between drugs and bacteria has only started recently1 and the main underlying mechanism proposed is the chemical transformation of drugs by microorganisms (biotransformation). Here we investigated the depletion of 15 structurally diverse drugs by 25 representative strains of gut bacteria. This revealed 70 bacteria-drug interactions, 29 of which had not to our knowledge been reported before. Over half of the new interactions can be ascribed to bioaccumulation; that is, bacteria storing the drug intracellularly without chemically modifying it, and in most cases without the growth of the bacteria being affected. As a case in point, we studied the molecular basis of bioaccumulation of the widely used antidepressant duloxetine by using click chemistry, thermal proteome profiling and metabolomics. We find that duloxetine binds to several metabolic enzymes and changes the metabolite secretion of the respective bacteria. When tested in a defined microbial community of accumulators and non-accumulators, duloxetine markedly altered the composition of the community through metabolic cross-feeding. We further validated our findings in an animal model, showing that bioaccumulating bacteria attenuate the behavioural response of Caenorhabditis elegans to duloxetine. Together, our results show that bioaccumulation by gut bacteria may be a common mechanism that alters drug availability and bacterial metabolism, with implications for microbiota composition, pharmacokinetics, side effects and drug responses, probably in an individual manner.


Asunto(s)
Bacterias/metabolismo , Bioacumulación , Clorhidrato de Duloxetina/metabolismo , Microbioma Gastrointestinal/fisiología , Animales , Antidepresivos/metabolismo , Antidepresivos/farmacocinética , Caenorhabditis elegans/metabolismo , Células/metabolismo , Química Clic , Clorhidrato de Duloxetina/efectos adversos , Clorhidrato de Duloxetina/farmacocinética , Humanos , Metabolómica , Modelos Animales , Proteómica , Reproducibilidad de los Resultados
8.
Nature ; 588(7838): 473-478, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33299184

RESUMEN

Recent developments in high-throughput reverse genetics1,2 have revolutionized our ability to map gene function and interactions3-6. The power of these approaches depends on their ability to identify functionally associated genes, which elicit similar phenotypic changes across several perturbations (chemical, environmental or genetic) when knocked out7-9. However, owing to the large number of perturbations, these approaches have been limited to growth or morphological readouts10. Here we use a high-content biochemical readout, thermal proteome profiling11, to measure the proteome-wide protein abundance and thermal stability in response to 121 genetic perturbations in Escherichia coli. We show that thermal stability, and therefore the state and interactions of essential proteins, is commonly modulated, raising the possibility of studying a protein group that is particularly inaccessible to genetics. We find that functionally associated proteins have coordinated changes in abundance and thermal stability across perturbations, owing to their co-regulation and physical interactions (with proteins, metabolites or cofactors). Finally, we provide mechanistic insights into previously determined growth phenotypes12 that go beyond the deleted gene. These data represent a rich resource for inferring protein functions and interactions.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Estabilidad Proteica , Proteoma/metabolismo , Proteómica/métodos , Temperatura , Activación Enzimática , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación , Fenotipo , Proteoma/genética , Genética Inversa
10.
Annu Rev Pharmacol Toxicol ; 62: 465-482, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34499524

RESUMEN

Drug target deconvolution can accelerate the drug discovery process by identifying a drug's targets (facilitating medicinal chemistry efforts) and off-targets (anticipating toxicity effects or adverse drug reactions). Multiple mass spectrometry-based approaches have been developed for this purpose, but thermal proteome profiling (TPP) remains to date the only one that does not require compound modification and can be used to identify intracellular targets in living cells. TPP is based on the principle that the thermal stability of a protein can be affected by its interactions. Recent developments of this approach have expanded its applications beyond drugs and cell cultures to studying protein-drug interactions and biological phenomena in tissues. These developments open up the possibility of studying drug treatment or mechanisms of disease in a holistic fashion, which can result in the design of better drugs and lead to a better understanding of fundamental biology.


Asunto(s)
Descubrimiento de Drogas , Proteoma , Humanos , Terapia Molecular Dirigida , Proteoma/análisis , Proteoma/antagonistas & inhibidores , Proteoma/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA