Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
IEEE Trans Neural Netw Learn Syst ; 33(4): 1400-1413, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33332277

RESUMEN

This article focuses on the design, test, and validation of a deep neural network (DNN)-based control scheme capable of predicting optimal motion commands for autonomous ground vehicles (AGVs) during the parking maneuver process. The proposed design utilizes a multilayer structure. In the first layer, a desensitized trajectory optimization method is iteratively performed to establish a set of time-optimal parking trajectories with the consideration of noise-perturbed initial configurations. Subsequently, by using the preplanned optimal parking trajectory data set, several DNNs are trained in order to learn the functional relationship between the system state-control actions in the second layer. To obtain further improvements regarding the DNN performances, a simple yet effective data aggregation approach is designed and applied. These trained DNNs are then utilized as the motion controllers to generate feedback actions in real time. Numerical results were executed to demonstrate the effectiveness and the real-time applicability of using the proposed control scheme to plan and steer the AGV parking maneuver. Experimental results were also provided to justify the algorithm performance in real-world implementations.

2.
IEEE Trans Cybern ; 51(8): 4035-4049, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32149672

RESUMEN

Constrained autonomous vehicle overtaking trajectories are usually difficult to generate due to certain practical requirements and complex environmental limitations. This problem becomes more challenging when multiple contradicting objectives are required to be optimized and the on-road objects to be overtaken are irregularly placed. In this article, a novel swarm intelligence-based algorithm is proposed for producing the multiobjective optimal overtaking trajectory of autonomous ground vehicles. The proposed method solves a multiobjective optimal control model in order to optimize the maneuver time duration, the trajectory smoothness, and the vehicle visibility, while taking into account different types of mission-dependent constraints. However, one problem that could have an impact on the optimization process is the selection of algorithm control parameters. To desensitize the negative influence, a novel fuzzy adaptive strategy is proposed and embedded in the algorithm framework. This allows the optimization process to dynamically balance the local exploitation and global exploration, thereby exploring the tradeoff between objectives more effectively. The performance of using the designed fuzzy adaptive multiobjective method is analyzed and validated by executing a number of simulation studies. The results confirm the effectiveness of applying the proposed algorithm to produce multiobjective optimal overtaking trajectories for autonomous ground vehicles. Moreover, the comparison to other state-of-the-art multiobjective optimization schemes shows that the designed strategy tends to be more capable in terms of producing a set of widespread and high-quality Pareto-optimal solutions.

3.
IEEE Trans Cybern ; 50(4): 1630-1643, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30489277

RESUMEN

Highly constrained trajectory optimization problems are usually difficult to solve. Due to some real-world requirements, a typical trajectory optimization model may need to be formulated containing several objectives. Because of the discontinuity or nonlinearity in the vehicle dynamics and mission objectives, it is challenging to generate a compromised trajectory that can satisfy constraints and optimize objectives. To address the multiobjective trajectory planning problem, this paper applies a specific multiple-shooting discretization technique with the newest NSGA-III optimization algorithm and constructs a new evolutionary optimal control solver. In addition, three constraint handling algorithms are incorporated in this evolutionary optimal control framework. The performance of using different constraint handling strategies is detailed and analyzed. The proposed approach is compared with other well-developed multiobjective techniques. Experimental studies demonstrate that the present method can outperform other evolutionary-based solvers investigated in this paper with respect to convergence ability and distribution of the Pareto-optimal solutions. Therefore, the present evolutionary optimal control solver is more attractive and can offer an alternative for optimizing multiobjective continuous-time trajectory optimization problems.

4.
IEEE Trans Cybern ; 50(10): 4332-4345, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30763253

RESUMEN

The objective of this paper is to present an approximation-based strategy for solving the problem of nonlinear trajectory optimization with the consideration of probabilistic constraints. The proposed method defines a smooth and differentiable function to replace probabilistic constraints by the deterministic ones, thereby converting the chance-constrained trajectory optimization model into a parametric nonlinear programming model. In addition, it is proved that the approximation function and the corresponding approximation set will converge to that of the original problem. Furthermore, the optimal solution of the approximated model is ensured to converge to the optimal solution of the original problem. Numerical results, obtained from a new chance-constrained space vehicle trajectory optimization model and a 3-D unmanned vehicle trajectory smoothing problem, verify the feasibility and effectiveness of the proposed approach. Comparative studies were also carried out to show the proposed design can yield good performance and outperform other typical chance-constrained optimization techniques investigated in this paper.

5.
IEEE Trans Neural Netw Learn Syst ; 31(11): 5005-5013, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-31870996

RESUMEN

This brief presents an integrated trajectory planning and attitude control framework for six-degree-of-freedom (6-DOF) hypersonic vehicle (HV) reentry flight. The proposed framework utilizes a bilevel structure incorporating desensitized trajectory optimization and deep neural network (DNN)-based control. In the upper level, a trajectory data set containing optimal system control and state trajectories is generated, while in the lower level control system, DNNs are constructed and trained using the pregenerated trajectory ensemble in order to represent the functional relationship between the optimized system states and controls. These well-trained networks are then used to produce optimal feedback actions online. A detailed simulation analysis was performed to validate the real-time applicability and the optimality of the designed bilevel framework. Moreover, a comparative analysis was also carried out between the proposed DNN-driven controller and other optimization-based techniques existing in related works. Our results verify the reliability of using the proposed bilevel design for the control of HV reentry flight in real time.

6.
IEEE Trans Cybern ; 49(2): 467-480, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29990232

RESUMEN

In this paper, a constrained space maneuver vehicles trajectory optimization problem is formulated and solved using a new three-layer-hybrid optimal control solver. To decrease the sensitivity of the initial guess and enhance the stability of the algorithm, an initial guess generator based on a specific stochastic algorithm is applied. In addition, an improved gradient-based algorithm is used as the inner solver, which can offer the user more flexibility to control the optimization process. Furthermore, in order to analyze the quality of the solution, the optimality verification conditions are derived. Numerical simulations were carried out by using the proposed hybrid solver and the results indicate that the proposed strategy can have better performance in terms of convergence speed and convergence ability when compared with other typical optimal control solvers. A Monte-Carlo simulation was performed and the results show a robust performance of the proposed algorithm in dispersed conditions.

7.
IEEE Trans Cybern ; 47(8): 2193-2202, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27390197

RESUMEN

In this paper, we predeploy a large number of smart agents to monitor an area of interest. This area could be divided into many Voronoi cells by using the knowledge of Voronoi diagram and every Voronoi site agent is responsible for monitoring and tracking the target in its cell. Then, a cooperative relay tracking strategy is proposed such that during the tracking process, when a target enters a new Voronoi cell, this event triggers the switching of both tracking agents and communication topology. This is significantly different from the traditional switching topologies. In addition, during the tracking process, the topology and tracking agents switch, which may lead the tracking system to be stable or unstable. The system switches either among consecutive stable subsystems and consecutive unstable subsystems or between stable and unstable subsystems. The objective of this paper is to design a tracking strategy guaranteeing overall successful tracking despite the existence of unstable subsystems. We also address extended discussions on the case where the dynamics of agents are subject to disturbances and the disturbance attenuation level is achieved. Finally, the proposed tracking strategy is verified by a set of simulations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA