Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Immunol ; 213(1): 86-95, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38787200

RESUMEN

The nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3, also called cryopyrin) inflammasome is an intracellular innate immune complex, which consists of the pattern-recognition receptor NLRP3, the adaptor apoptosis-assciated speck-like protein containing a caspase recruitment domain, and procaspase-1. Aberrant activation of the NLRP3 inflammasome causes an autoinflammatory disease called cryopyrin-associated periodic syndrome (CAPS). CAPS is caused by gain-of-function mutations in the NLRP3-encoding gene CIAS1; however, the mechanism of CAPS pathogenesis has not been fully understood. Thus, unknown regulators of the NLRP3 inflammasome, which are associated with CAPS development, are being investigated. To identify novel components of the NLRP3 inflammasome, we performed a high-throughput screen using a human protein array, with NLRP3 as the bait. We identified a NLRP3-binding protein, which we called the cryopyrin-associated nano enhancer (CANE). We demonstrated that CANE increased IL-1ß secretion after NLRP3 inflammasome reconstitution in human embryonic kidney 293T cells and formed a "speck" in the cytosol, a hallmark of NLRP3 inflammasome activity. Reduced expression of endogenous CANE decreased IL-1ß secretion upon stimulation with the NLRP3 agonist nigericin. To investigate the role of CANE in vivo, we developed CANE-transgenic mice. The PBMCs and bone marrow-derived macrophages of CANE-transgenic mice exhibited increased IL-1ß secretion. Moreover, increased autoinflammatory neutrophil infiltration was observed in the s.c. tissue of CANE-transgenic versus wild-type mice; these phenotypes were consistent with those of CAPS model mice. These findings suggest that CANE, a component of the NLRP3 inflammasome, is a potential modulator of the inflammasome and a contributor to CAPS pathogenesis.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Animales , Inflamasomas/metabolismo , Inflamasomas/inmunología , Ratones , Humanos , Células HEK293 , Síndromes Periódicos Asociados a Criopirina/inmunología , Síndromes Periódicos Asociados a Criopirina/genética , Ratones Endogámicos C57BL , Interleucina-1beta/metabolismo , Ratones Noqueados
2.
EMBO J ; 40(4): e105375, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33470442

RESUMEN

Thalidomide causes teratogenic effects by inducing protein degradation via cereblon (CRBN)-containing ubiquitin ligase and modification of its substrate specificity. Human P450 cytochromes convert thalidomide into two monohydroxylated metabolites that are considered to contribute to thalidomide effects, through mechanisms that remain unclear. Here, we report that promyelocytic leukaemia zinc finger (PLZF)/ZBTB16 is a CRBN target protein whose degradation is involved in thalidomide- and 5-hydroxythalidomide-induced teratogenicity. Using a human transcription factor protein array produced in a wheat cell-free protein synthesis system, PLZF was identified as a thalidomide-dependent CRBN substrate. PLZF is degraded by the ubiquitin ligase CRL4CRBN in complex with thalidomide, its derivatives or 5-hydroxythalidomide in a manner dependent on the conserved first and third zinc finger domains of PLZF. Surprisingly, thalidomide and 5-hydroxythalidomide confer distinctly different substrate specificities to mouse and chicken CRBN, and both compounds cause teratogenic phenotypes in chicken embryos. Consistently, knockdown of Plzf induces short bone formation in chicken limbs. Most importantly, degradation of PLZF protein, but not of the known thalidomide-dependent CRBN substrate SALL4, was induced by thalidomide or 5-hydroxythalidomide treatment in chicken embryos. Furthermore, PLZF overexpression partially rescued the thalidomide-induced phenotypes. Our findings implicate PLZF as an important thalidomide-induced CRBN neosubstrate involved in thalidomide teratogenicity.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Citocromo P-450 CYP3A/metabolismo , Proteína de la Leucemia Promielocítica con Dedos de Zinc/metabolismo , Teratogénesis , Talidomida/análogos & derivados , Talidomida/toxicidad , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Embrión de Pollo , Citocromo P-450 CYP3A/genética , Humanos , Ratones , Proteína de la Leucemia Promielocítica con Dedos de Zinc/genética , Proteolisis , Especificidad por Sustrato , Teratógenos/toxicidad , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas/genética
3.
PLoS Pathog ; 19(8): e1011591, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37585449

RESUMEN

Hepatitis C virus (HCV) is a pathogen characterized not only by its persistent infection leading to the development of cirrhosis and hepatocellular carcinoma (HCC), but also by metabolic disorders such as lipid and iron dysregulation. Elevated iron load is commonly observed in the livers of patients with chronic hepatitis C, and hepatic iron overload is a highly profibrogenic and carcinogenic factor that increases the risk of HCC. However, the underlying mechanisms of elevated iron accumulation in HCV-infected livers remain to be fully elucidated. Here, we observed iron accumulation in cells and liver tissues under HCV infection and in mice expressing viral proteins from recombinant adenoviruses. We established two molecular mechanisms that contribute to increased iron load in cells caused by HCV infection. One is the transcriptional induction of hepcidin, the key hormone for modulating iron homeostasis. The transcription factor cAMP-responsive element-binding protein hepatocyte specific (CREBH), which was activated by HCV infection, not only directly recognizes the hepcidin promoter but also induces bone morphogenetic protein 6 (BMP6) expression, resulting in an activated BMP-SMAD pathway that enhances hepcidin promoter activity. The other is post-translational regulation of the iron-exporting membrane protein ferroportin 1 (FPN1), which is cleaved between residues Cys284 and Ala285 in the intracytoplasmic loop region of the central portion mediated by HCV NS3-4A serine protease. We propose that host transcriptional activation triggered by endoplasmic reticulum stress and FPN1 cleavage by viral protease work in concert to impair iron efflux, leading to iron accumulation in HCV-infected cells.


Asunto(s)
Carcinoma Hepatocelular , Hepatitis C , Neoplasias Hepáticas , Animales , Ratones , Hepacivirus/fisiología , Hepatitis C/metabolismo , Hepcidinas/genética , Hepcidinas/metabolismo , Hierro/metabolismo , Activación Transcripcional , Regulación hacia Arriba
4.
J Biol Chem ; 298(1): 101504, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34929168

RESUMEN

A network of protein-protein interactions (PPI) is involved in the activation of (+)-7-iso-jasmonoyl-L-isoleucine (JA-Ile), a plant hormone that regulates plant defense responses as well as plant growth and development. In the absence of JA-Ile, inhibitory protein jasmonate-ZIM-domain (JAZ) represses JA-related transcription factors, including a master regulator, MYC. In contrast, when JA-Ile accumulates in response to environmental stresses, PPI occurs between JAZ and the F-box protein COI1, which triggers JAZ degradation, resulting in derepressed MYC that can interact with the transcriptional mediator MED25 and upregulate JA-Ile-related gene expression. Activated JA signaling is eventually suppressed through the catabolism of JA-Ile and feedback suppression by JAZ splice variants containing a cryptic MYC-interacting domain (CMID). However, the detailed structural basis of some PPIs involved in JA-Ile signaling remains unclear. Herein, we analyzed PPI between MYC3 and MED25, focusing on the key interactions that activate the JA-Ile signaling pathway. Biochemical assays revealed that a short binding domain of MED25 (CMIDM) is responsible for the interaction with MYC, and that a bipartite interaction is critical for the formation of a stable complex. We also show the mode of interaction between MED25 and MYC is closely related to that of CMID and MYC. In addition, quantitative analyses on the binding of MYC3-JAZs and MYC3-MED25 revealed the order of binding affinity as JAZJas < MED25CMIDM < JAZCMID, suggesting a mechanism for how the transcriptional machinery causes activation and negative feedback regulation during jasmonate signaling. These results further illuminate the transcriptional machinery responsible for JA-Ile signaling.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ciclopentanos , Proteínas de Unión al ADN , Isoleucina/análogos & derivados , Transactivadores , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Proteínas de Unión al ADN/metabolismo , Isoleucina/metabolismo , Oxilipinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Dominios y Motivos de Interacción de Proteínas , Transactivadores/metabolismo
5.
Plant J ; 110(2): 470-481, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35061931

RESUMEN

The nonexpressor of pathogenesis-related (NPR) gene family is well known to play a crucial role in transactivation of TGA transcription factors for salicylic acid (SA)-responsive genes, including pathogenesis-related protein 1 (PR1), during plants' immune response after pathogen attack in the model dicot Arabidopsis thaliana. However, little is known about NPR gene functions in monocots. We therefore explored the functions of NPRs in SA signaling in the model monocot Brachypodium distachyon. BdNPR1 and BdNPR2/3 share structural similarities with A. thaliana AtNPR1/2 and AtNPR3/4 subfamilies, respectively. The transcript level of BdNPR2 but not BdNPR1/3 appeared to be positively regulated in leaves in response to methyl salicylate. Reporter assays in protoplasts showed that BdNPR2 positively regulated BdTGA1-mediated activation of PR1. This transactivation occurred in an SA-dependent manner through SA binding at Arg468 of BdNPR2. In contrast, BdNPR1 functioned as a suppressor of BdNPR2/BdTGA1-mediated transcription of PR1. Collectively, our findings reveal that the TGA-promoted transcription of SA-inducible PR1 is orchestrated by the activator BdNPR2 and the repressor BdNPR1, which function competitively in B. distachyon.


Asunto(s)
Arabidopsis , Brachypodium , Arabidopsis/genética , Arabidopsis/metabolismo , Brachypodium/genética , Brachypodium/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional/genética
6.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36674500

RESUMEN

JAV1-associated ubiquitin ligase 1 (JUL1) is a RING-type E3 ubiquitin ligase that catalyzes ubiquitination of JAV1, a jasmonate signaling repressor, in Arabidopsis thaliana in response to herbivore attack. Here we present a new insight into the nature of JUL1 as a multi-targeting enzyme for not only JAV1 but also transcription factors (TFs) screened using in vitro and in vivo protein interaction assays. Reporter assays using protoplasts showed that the JUL1-interacting TFs (JiTFs), including ERF15, bZIP53 and ORA59, were involved in transcriptional activation of jasmonate-responsive PDF1.2 and abscisic acid-responsive GEA6. Likewise, assays using mutant plants suggested that the 3 JiTFs were indeed responsible for transcriptional regulation of PDF1.2 and/or GEA6, and ERF15 and ORA59 were substantially responsible for the anti-herbivore trait. In vitro protein ubiqutination assays showed that JUL1 catalyzed ubiqutination of JAV1 but not any of the TFs. This was in accord with the finding that JUL1 abolished JAV1's interference with ERF15 function, according to the reporter assay. Moreover, of great interest is our finding that ERF15 but not bZIP53 or ORA59 serves as a scaffold for the JAV1/JUL1 system, indicating that there is narrow selectivity of the transcriptional reprogramming by the JAV1/JUL1 system.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ubiquitina-Proteína Ligasas , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
7.
Plant Mol Biol ; 109(4-5): 651-666, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34476681

RESUMEN

KEY MESSAGE: This study describes biological functions of the bHLH transcription factor RERJ1 involved in the jasmonate response and the related defense-associated metabolic pathways in rice, with particular focus on deciphering the regulatory mechanisms underlying stress-induced volatile emission and herbivory resistance. RERJ1 is rapidly and drastically induced by wounding and jasmonate treatment but its biological function remains unknown as yet. Here we provide evidence of the biological function of RERJ1 in plant defense, specifically in response to herbivory and pathogen attack, and offer insights into the RERJ1-mediated regulation of metabolic pathways of specialized defense compounds, such as monoterpene linalool, in possible collaboration with OsMYC2-a well-known master regulator in jasmonate signaling. In rice (Oryza sativa L.), the basic helix-loop-helix (bHLH) family transcription factor RERJ1 is induced under environmental stresses, such as wounding and drought, which are closely linked to jasmonate (JA) accumulation. Here, we investigated the biological function of RERJ1 in response to biotic stresses, such as herbivory and pathogen infection, using an RERJ1-defective mutant. Transcriptome analysis of the rerj1-Tos17 mutant revealed that RERJ1 regulated the expression of a typical family of conserved JA-responsive genes (e.g., terpene synthases, proteinase inhibitors, and jasmonate ZIM domain proteins). Upon exposure to armyworm attack, the rerj1-Tos17 mutant exhibited more severe damage than the wildtype, and significant weight gain of the larvae fed on the mutant was observed. Upon Xanthomonas oryzae infection, the rerj1-Tos17 mutant developed more severe symptoms than the wildtype. Among RERJ1-regulated terpene synthases, linalool synthase expression was markedly disrupted and linalool emission after wounding was significantly decreased in the rerj1-Tos17 mutant. RERJ1 appears to interact with OsMYC2-a master regulator of JA signaling-and many OsJAZ proteins, although no obvious epistatic interaction was detected between them at the transcriptional level. These results indicate that RERJ1 is involved in the transcriptional induction of JA-mediated stress-responsive genes via physical association with OsMYC2 and mediates defense against herbivory and bacterial infection through JA signaling.


Asunto(s)
Oryza , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas , Herbivoria , Oryza/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo
8.
Biochem Biophys Res Commun ; 592: 54-59, 2022 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-35030423

RESUMEN

Proteins and antibodies labeled with biotin have been widely used for protein analysis, enzyme immunoassays, and diagnoses. Presently, they are prepared using either a chemical reaction involving a biotin N-hydroxysuccinimide (NHS) ester compound or by enzymatic biotin ligation using a combination of a biotinylation-peptide tag and Escherichia coli BirA. However, these methods are relatively complicated. Recently BirA was improved to TurboID, a highly active enzyme for proximity labeling with biotin. Here, we demonstrate a novel simple biotin labeling method for proteins and antibodies using TurboID. Purified TurboID was mixed with a protein or an antibody in the presence of biotin and ATP in the general biochemical buffer condition, followed by biotin labeling. Biotin labeling sites by TurboID were found on the surface of green fluorescent protein. Biotin labeling of IκBα by TurboID indicated its binding to RelA. Furthermore, TurboID-dependent biotin labeling of monoclonal antibodies from rabbits and mice could be directly used for immunoblotting detection of specific proteins without the purification step. These results indicate that TurboID provides a very useful and simple method for biotin labeling of functional proteins.


Asunto(s)
Anticuerpos/metabolismo , Biotina/metabolismo , Coloración y Etiquetado/métodos , Biotinilación , Proteínas Fluorescentes Verdes/metabolismo , Inhibidor NF-kappaB alfa/metabolismo , Unión Proteica
9.
Plant J ; 104(3): 679-692, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32780529

RESUMEN

Phototropins (phot1 and phot2) are plant blue light receptor kinases that function to mediate phototropism, chloroplast movement, leaf flattening, and stomatal opening in Arabidopsis. Considerable progress has been made in understanding the mechanisms associated with phototropin receptor activation by light. However, the identities of phototropin signaling components are less well understood by comparison. In this study, we specifically searched for protein kinases that interact with phototropins by using an in vitro screening method (AlphaScreen) to profile interactions against an Arabidopsis protein kinase library. We found that CBL-interacting protein kinase 23 (CIPK23) interacts with both phot1 and phot2. Although these interactions were verified by in vitro pull-down and in vivo bimolecular fluorescence complementation assays, CIPK23 was not phosphorylated by phot1, as least in vitro. Mutants lacking CIPK23 were found to exhibit impaired stomatal opening in response to blue light but no deficits in other phototropin-mediated responses. We further found that blue light activation of inward-rectifying K+ (K+ in ) channels was impaired in the guard cells of cipk23 mutants, whereas activation of the plasma membrane H+ -ATPase was not. The blue light activation of K+ in channels was also impaired in the mutant of BLUS1, which is one of the phototropin substrates in guard cells. We therefore conclude that CIPK23 promotes stomatal opening through activation of K+ in channels most likely in concert with BLUS1, but through a mechanism other than activation of the H+ -ATPase. The role of CIPK23 as a newly identified component of phototropin signaling in stomatal guard cells is discussed.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Estomas de Plantas/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Luz , Mutación , Fosforilación , Fototropismo , Canales de Potasio/metabolismo , Mapas de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/genética
10.
J Biol Chem ; 294(38): 14135-14148, 2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31366726

RESUMEN

The tumor suppressor CYLD is a deubiquitinating enzyme that suppresses polyubiquitin-dependent signaling pathways, including the proinflammatory and cell growth-promoting NF-κB pathway. Missense mutations in the CYLD gene are present in individuals with syndromes such as multiple familial trichoepithelioma (MFT), but the pathogenic roles of these mutations remain unclear. Recent studies have shown that CYLD interacts with a RING finger domain protein, mind bomb homologue 2 (MIB2), in the regulation of NOTCH signaling. However, whether MIB2 is an E3 ubiquitin ligase that acts on CYLD is unknown. Here, using the cell-free-based AlphaScreen and pulldown assays to detect protein-protein interactions, along with immunofluorescence assays and murine Mib2 knockout cells and animals, we demonstrate that MIB2 promotes proteasomal degradation of CYLD and enhances NF-κB signaling. Of note, arthritic inflammation was suppressed in Mib2-deficient mice. We further observed that the ankyrin repeat in MIB2 interacts with the third CAP domain in CYLD and that MIB2 catalyzes Lys-48-linked polyubiquitination of CYLD at Lys-338 and Lys-530. MIB2-dependent CYLD degradation activated NF-κB signaling via tumor necrosis factor alpha (TNFα) stimulation and the linear ubiquitination assembly complex (LUBAC). Mib2-knockout mice had reduced serum interleukin-6 (IL-6) and exhibited suppressed inflammatory responses in the K/BxN serum-transfer arthritis model. Interestingly, MIB2 significantly enhanced the degradation of a CYLDP904L variant identified in an individual with MFT, although the molecular pathogenesis of the disease was not clarified here. Together, these results suggest that MIB2 enhances NF-κB signaling in inflammation by promoting the ubiquitin-dependent degradation of CYLD.


Asunto(s)
Enzima Desubiquitinante CYLD/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Cisteína Endopeptidasas/metabolismo , Enzimas Desubicuitinizantes/metabolismo , Femenino , Células HEK293 , Células HeLa , Humanos , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/metabolismo , Poliubiquitina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Transducción de Señal/fisiología , Factor de Transcripción ReIA , Factor de Necrosis Tumoral alfa/metabolismo , Ubiquitina/metabolismo , Ubiquitinación
11.
Biochem Biophys Res Commun ; 524(1): 1-7, 2020 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-31898971

RESUMEN

The tumor suppressor CYLD negatively regulates polyubiquitination-dependent cellular signaling such as nuclear factor (NF)-κB signaling. In addition to CYLD, multiple deubiquitinating enzymes (DUBs) are also involved in the regulation of this signaling pathway, and distinct role of CYLD is yet to be clarified. Here, we identified a small chemical named Subquinocin that inhibited the DUB activity of recombinant CYLD using a wheat cell-free protein synthesis and an AlphaScreen technology. In cells, Subquinocin increased the polyubiquitination of NEMO and RIP1 and enhanced NF-κB activation. Modeling and mutation analyses indicated that Subquinocin interacted with Y940 in CYLD, which locates close to catalytic center of CYLD, and is conserved among the USP-family DUBs. Further biochemical evaluation revealed that Subquinocin inhibited USP-family DUBs, but not other family DUBs including OTU. Although Subquinocin showed a broad specificity toward USP-family DUBs, the inhibitory effect of Subquinocin on NF-κB signaling was negligible in CYLD-KO cells, indicating that CYLD is a major target of Subquinocin on the suppression of NF-κB signaling. In conclusion, Subquinocin identified here is a useful tool to analyze the signal transduction mediated by USP-family DUBs.


Asunto(s)
Antineoplásicos/química , Enzima Desubiquitinante CYLD/antagonistas & inhibidores , Inhibidores Enzimáticos/química , FN-kappa B/metabolismo , Secuencia de Aminoácidos , Antineoplásicos/farmacología , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Genes Supresores de Tumor/efectos de los fármacos , Glutatión Transferasa/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Mutación , Proteínas de Complejo Poro Nuclear/metabolismo , Unión Proteica , Conformación Proteica , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo , Ubiquitinación/efectos de los fármacos
12.
Plant Physiol ; 179(4): 1273-1284, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30573672

RESUMEN

Jasmonates regulate plant defense and development. In Arabidopsis (Arabidopsis thaliana), JASMONATE-ASSOCIATED VQ-MOTIF GENE1 (JAV1/VQ22) is a repressor of jasmonate-mediated defense responses and is degraded through the ubiquitin-26S proteasome system after herbivory. We found that JAV1-ASSOCIATED UBIQUITIN LIGASE1 (JUL1), a RING-type E3 ubiquitin ligase, interacted with JAV1. JUL1 interacted with JAV1 in the nucleus to ubiquitinate JAV1, leading to proteasomal degradation of JAV1. The transcript levels of JUL1 and JAV1 were coordinately and positively regulated by the CORONATINE INSENSITIVE1-dependent signaling pathway in the jasmonate signaling network, but in a manner that was not dependent on CORONATINE INSENSITIVE1-mediated signaling upon herbivory by Spodoptera litura Gain or loss of function of JUL1 modulated the expression levels of the defensin gene PDF1.2 in leaves, conferring on the plants various defense properties against the generalist herbivore S. litura Because neither the JUL1 mutant nor overexpression lines showed any obvious developmental defects, we concluded that the JAV1/JUL1 system functions as a specific coordinator of reprogramming of plant defense responses. Altogether, our findings offer insight into the mechanisms by which the JAV1/JUL1 system acts specifically to coordinate plant defense responses without interfering with plant development or growth.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas
13.
Photochem Photobiol Sci ; 19(1): 88-98, 2020 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-31904040

RESUMEN

Stomatal pores, which are surrounded by pairs of guard cells in the plant epidermis, regulate gas exchange between plants and the atmosphere, thereby controlling photosynthesis and transpiration. Blue light works as a signal to guard cells, to induce intracellular signaling and open stomata. Blue light receptor phototropins (phots) are activated by blue light; phot-mediated signals promote plasma membrane (PM) H+-ATPase activity via C-terminal Thr phosphorylation, serving as the driving force for stomatal opening in guard cells. However, the details of this signaling process are not fully understood. In this study, through an in vitro screening of phot-interacting protein kinases, we obtained the CBC1 and CBC2 that had been reported as signal transducers in stomatal opening. Promoter activities of CBC1 and CBC2 indicated that both genes were expressed in guard cells. Single and double knockout mutants of CBC1 and CBC2 showed no lesions in the context of phot-mediated phototropism, chloroplast movement, or leaf flattening. In contrast, the cbc1cbc2 double mutant showed larger stomatal opening under both dark and blue light conditions. Interestingly, the level of phosphorylation of C-terminal Thr of PM H+-ATPase was higher in double mutant guard cells. The larger stomatal openings of the double mutant were effectively suppressed by the phytohormone abscisic acid (ABA). CBC1 and CBC2 interacted with BLUS1 and PM H+-ATPase in vitro. From these results, we conclude that CBC1 and CBC2 act as negative regulators of stomatal opening, probably via inhibition of PM H+-ATPase activity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Membrana Celular/enzimología , Estomas de Plantas/metabolismo , ATPasas de Translocación de Protón/metabolismo , Fosforilación
14.
Biochem Biophys Res Commun ; 516(4): 1116-1122, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31280863

RESUMEN

Eukaryotic translation initiation factor 3 subunit D (EIF3D) binds to the 5'-cap of specific mRNAs, initiating their translation into polypeptides. From a pathological standpoint, EIF3D has been observed to be essential for cell growth in various cancer types, and cancer patients with high EIF3D mRNA levels exhibit poor prognosis, indicating involvement of EIF3D in oncogenesis. In this study, we found, by mass spectrometry, that Cullin-3 (CUL3)/KCTD10 ubiquitin (Ub) ligase forms a complex with EIF3D. We also demonstrated that EIF3D is K27-polyubiquitinated at the lysine 153 and 275 residues in a KCTD10-dependent manner in human hepatocellular carcinoma HepG2 cells. Similar to other cancers, high expression of EIF3D significantly correlated with poor prognosis in hepatocellular carcinoma patients, and depletion of EIF3D drastically suppressed HepG2 cell proliferation. These results indicate that EIF3D is a novel substrate of CUL3/KCTD10 Ub ligase and suggest involvement of K27-polyubiquitinated EIF3D in the development of hepatocellular carcinoma.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Proteínas Cullin/metabolismo , Factor 3 de Iniciación Eucariótica/metabolismo , Neoplasias Hepáticas/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Células Hep G2 , Humanos , Mapas de Interacción de Proteínas , Ubiquitinación
15.
PLoS Pathog ; 13(1): e1006162, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28103322

RESUMEN

The Tax protein of human T-cell leukemia virus type 1 (HTLV-1) is crucial for the development of adult T-cell leukemia (ATL), a highly malignant CD4+ T cell neoplasm. Among the multiple aberrant Tax-induced effects on cellular processes, persistent activation of transcription factor NF-κB, which is activated only transiently upon physiological stimulation, is essential for leukemogenesis. We and others have shown that Tax induces activation of the IκB kinase (IKK) complex, which is a critical step in NF-κB activation, by generating Lys63-linked polyubiquitin chains. However, the molecular mechanism underlying Tax-induced IKK activation is controversial and not fully understood. Here, we demonstrate that Tax recruits linear (Met1-linked) ubiquitin chain assembly complex (LUBAC) to the IKK complex and that Tax fails to induce IKK activation in cells that lack LUBAC activity. Mass spectrometric analyses revealed that both Lys63-linked and Met1-linked polyubiquitin chains are associated with the IKK complex. Furthermore, treatment of the IKK-associated polyubiquitin chains with Met1-linked-chain-specific deubiquitinase (OTULIN) resulted in the reduction of high molecular weight polyubiquitin chains and the generation of short Lys63-linked ubiquitin chains, indicating that Tax can induce the generation of Lys63- and Met1-linked hybrid polyubiquitin chains. We also demonstrate that Tax induces formation of the active macromolecular IKK complex and that the blocking of Tax-induced polyubiquitin chain synthesis inhibited formation of the macromolecular complex. Taken together, these results lead us to propose a novel model in which the hybrid-chain-dependent oligomerization of the IKK complex triggered by Tax leads to trans-autophosphorylation-mediated IKK activation.


Asunto(s)
Activación Enzimática/fisiología , Productos del Gen tax/metabolismo , Infecciones por HTLV-I/metabolismo , Quinasa I-kappa B/metabolismo , FN-kappa B/metabolismo , Electroforesis en Gel de Poliacrilamida , Células HEK293 , Virus Linfotrópico T Tipo 1 Humano/patogenicidad , Humanos , Immunoblotting , Inmunoprecipitación , Células Jurkat , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/fisiología , Transfección
16.
J Immunol ; 199(5): 1584-1595, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28716825

RESUMEN

Store-operated Ca2+ release-activated Ca2+ (CRAC) channels are involved in the pathogenesis of rheumatoid arthritis (RA) and have been studied as therapeutic targets in the management of RA. We investigated the efficacy and safety of CRAC inhibitors, including a neutralizing Ab (hCRACM1-IgG) and YM-58483, in the treatment of RA. Patient-derived T cell and B cell activity was suppressed by hCRACM1-IgG as well as YM-58483. Systemically constant, s.c. infused CRAC inhibitors showed anti-inflammatory activity in a human-NOD/SCID xenograft RA model as well as protective effects against the destruction of cartilage and bone. hCRACM1-IgG appeared to be safe for systemic application, whereas YM-58483 showed hepatic and renal toxicity in xenograft mice. Treatment with both CRAC inhibitors also caused hyperglycemia in xenograft mice. These results indicate the potential of hCRACM1-IgG and YM-58483 as anti-immunological agents for the treatment of RA. However, some safety issues should be addressed and application methods should be optimized prior to their clinical use.


Asunto(s)
Anilidas/uso terapéutico , Antiinflamatorios/uso terapéutico , Anticuerpos Neutralizantes/uso terapéutico , Artritis Reumatoide/terapia , Linfocitos B/efectos de los fármacos , Canales de Calcio Activados por la Liberación de Calcio/antagonistas & inhibidores , Inmunoterapia/métodos , Linfocitos T/efectos de los fármacos , Tiadiazoles/uso terapéutico , Anilidas/efectos adversos , Animales , Anticuerpos Neutralizantes/efectos adversos , Artritis Reumatoide/inmunología , Linfocitos B/inmunología , Células Cultivadas , Modelos Animales de Enfermedad , Xenoinjertos , Humanos , Hiperglucemia/etiología , Terapia de Inmunosupresión , Ratones , Ratones SCID , Linfocitos T/inmunología , Tiadiazoles/efectos adversos
17.
J Biol Chem ; 292(30): 12528-12541, 2017 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-28536267

RESUMEN

RUNX1 is a member of RUNX transcription factors and plays important roles in hematopoiesis. Disruption of RUNX1 activity has been implicated in the development of hematopoietic neoplasms. Chromosomal translocations involving the RUNX1 gene are associated with several types of leukemia, including acute myeloid leukemia driven by a leukemogenic fusion protein RUNX1-RUNX1T1. Previous studies have shown that RUNX1 is an unstable protein and is subjected to proteolytic degradation mediated by the ubiquitin-proteasome pathway. However, the precise mechanisms of RUNX1 ubiquitination have not been fully understood. Furthermore, much less is known about the mechanisms to regulate the stability of RUNX1-RUNX1T1. In this study, we identified several RUNX1-interacting E3 ubiquitin ligases using a novel high-throughput binding assay. Among them, we found that STUB1 bound to RUNX1 and induced its ubiquitination and degradation mainly in the nucleus. Immunofluorescence analyses revealed that the STUB1-induced ubiquitination also promoted nuclear export of RUNX1, which probably contributes to the reduced transcriptional activity of RUNX1 in STUB1-overexpressing cells. STUB1 also induced ubiquitination of RUNX1-RUNX1T1 and down-regulated its expression. Importantly, STUB1 overexpression showed a substantial growth-inhibitory effect in myeloid leukemia cells that harbor RUNX1-RUNX1T1, whereas it showed only a marginal effect in other non-RUNX1-RUNX1T1 leukemia cells and normal human cord blood cells. Taken together, these data suggest that the E3 ubiquitin ligase STUB1 is a negative regulator of both RUNX1 and RUNX1-RUNX1T1. Activation of STUB1 could be a promising therapeutic strategy for RUNX1-RUNX1T1 leukemia.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Proteínas de Fusión Oncogénica/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Humanos , Estabilidad Proteica , Proteína 1 Compañera de Translocación de RUNX1
18.
Biochem Biophys Res Commun ; 505(3): 905-909, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30309654

RESUMEN

RUNX1 is a member of RUNX transcription factors and plays important roles in hematopoiesis. RUNX1 function is under the tight control through posttranslational modifications, including phosphorylation and ubiquitination. We previously developed a luminescence-based binding assay (AlphaScreen) to systematically detect RUNX1-interacting E3 ubiquitin ligases. In this study, we showed that a nuclear ubiquitin ligase RNF38 induced ubiquitination of RUNX1. RNF38-induced RUNX1 ubiquitination did not promote RUNX1 degradation, but rather stabilized RUNX1 protein. We also found that RNF38 enhanced RUNX1-mediated transcriptional repression of the erythroid master regulator KLF1 in K562 cells. Consequently, RNF38 cooperated with RUNX1 to inhibit erythroid differentiation of K562 cells. Thus, our study identified RNF38 as a novel E3 ligase that modifies RUNX1 function without inducing its degradation.


Asunto(s)
Proteínas Portadoras/farmacología , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Ubiquitinación/efectos de los fármacos , Diferenciación Celular , Subunidad alfa 2 del Factor de Unión al Sitio Principal/efectos de los fármacos , Células Eritroides/citología , Células Eritroides/efectos de los fármacos , Humanos , Células K562 , Factores de Transcripción de Tipo Kruppel , Estabilidad Proteica/efectos de los fármacos , Ubiquitina-Proteína Ligasas/farmacología
19.
Biochem Biophys Res Commun ; 495(3): 2289-2295, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29284118

RESUMEN

Nuclear factor-κB (NF-κB) proteins are transcription factors that play key roles in regulating most immune responses and cell death. Constitutively active NF-κB has been shown to exhibit chemoresistance by inducing anti-apoptosis in tumor cells. Multiple myeloma is known as a constitutive NF-κB activating disease, and the proteasome inhibitor bortezomib is used to treat multiple myeloma and mantle cell lymphoma. We demonstrate here that DANFIN (N,N'-bis-(2,4-dimethyl-phenyl)-ethane-1,2-diamine) functions as an inhibitor of the p65 family proteins and induces chemosensitization to bortezomib in multiple myeloma. DANFIN was found to be an inhibitor of interactions between p65 and IκBα without the inhibition of the DNA binding activity of the p65 protein. In addition, DANFIN affected the IκBα binding region in Rel Homology Domain (RHD) and suppressed the nuclear translocalization of the p65 protein in cells. Furthermore, in multiple myeloma cells, DANFIN suppressed the expression level of NF-κB target genes and induced apoptosis. The combination therapy of DANFIN with bortezomib dramatically enhanced the apoptosis of multiple myeloma cells and indicated a remarkable anti-tumor effect in a multiple-myeloma xenograft mouse model.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Apoptosis/efectos de los fármacos , Bortezomib/administración & dosificación , Diaminas/administración & dosificación , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/metabolismo , FN-kappa B/metabolismo , Animales , Línea Celular Tumoral , Sinergismo Farmacológico , Femenino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Mieloma Múltiple/patología , Factores de Transcripción/metabolismo , Resultado del Tratamiento
20.
Biochem Biophys Res Commun ; 500(2): 261-267, 2018 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-29653104

RESUMEN

Malaria merozoite apical organelles; microneme and rhoptry secreted proteins play functional roles during and following invasion of host erythrocytes. Among numerous proteins, the rhoptries discharge high molecular weight proteins known as RhopH complex. Recent reports suggest that the RhopH complex is essential for growth and survival of the malaria parasite within erythrocytes. However, an in-depth understanding of the host-parasite molecular interactions is indispensable. Here we utilized a comprehensive mouse erythrocyte protein library consisting of 443 proteins produced by a wheat germ cell-free system, combined with AlphaScreen technology to identify mouse erythrocyte calmyrin as an interacting molecule of the rodent malaria parasite Plasmodium yoelii RhopH complex (PyRhopH). The PyRhopH interaction was dependent on the calmyrin N-terminus and divalent cation capacity. The finding unveils a recommendable and invaluable usefulness of our comprehensive mouse erythrocyte protein library together with the AlphaScreen technology in investigating a wide-range of host-parasite molecular interactions.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Eritrocitos/metabolismo , Eritrocitos/parasitología , Biblioteca de Genes , Malaria/metabolismo , Malaria/parasitología , Parásitos/metabolismo , Secuencia de Aminoácidos , Animales , Biotinilación , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Proteínas de Unión al Calcio/química , Quelantes/farmacología , Ratones Endogámicos BALB C , Plasmodium yoelii/metabolismo , Mapas de Interacción de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA