Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Asthma ; : 1-10, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38805387

RESUMEN

OBJECTIVE: The primary objective of this review is to focus on research findings that aim to determine the immunomodulatory action of ginger's active components and the molecular mechanisms that reduce asthma. The study aims to provide an overview of the scientific literature available on ginger's efficacy in treating allergic asthma. DATA SOURCE: The mouse model of asthma has been used to investigate the actions of ginger and its active compounds on allergies and asthma. Various studies and scientific literature on ginger's health-improving qualities and its traditional use have been examined. RESULTS: The findings indicate that ginger and its active ingredients have anti-asthmatic features and a suppressive impact on mast cell production of histamine. Animals given ginger and compounds derived from ginger demonstrate a notable reduction in allergic response, suggesting a significant role in lowering the allergic reaction. CONCLUSION: While ginger shows promise as a potential treatment for allergies and asthma due to its anti-inflammatory, antibacterial, antidiabetic, anticancer, and antioxidant effects, further examination, extrapolation, and confirmation of these results are necessary before utilizing ginger and its active components in human treatments. This review highlights the need for additional research and provides an overview of the current scientific literature on ginger's efficacy in treating allergic asthma.

2.
Bioorg Chem ; 152: 107760, 2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39197383

RESUMEN

A novel series of thiazole derivatives with pyrazole scaffold 16a-l as hybrid rosiglitazone/celecoxib analogs was designed, synthesized and tested for its PPAR-γ activation, α-glucosidase, α-amylase and COX-2 inhibitory activities. Regarding the anti-diabetic activity, all compounds were assessed in vitro against PPAR-γ activation, α-glucosidase and α-amylase inhibition in addition to in vivo hypoglycemic activity (one day and 15 days studies). Compounds 16b, 16c, 16e and 16 k showed good PPAR-γ activation (activation % ≈ 72-79 %) compared to that of the reference drug rosiglitazone (74 %). In addition, the same derivatives 16b, 16c, 16e and 16 k showed the highest inhibitory activities against α-glucosidase (IC50 = 0.158, 0.314, 0.305, 0.128 µM, respectively) and against α-amylase (IC50 = 32.46, 23.21, 7.74, 35.85 µM, respectively) compared to the reference drug acarbose (IC50 = 0.161 and 31.46 µM for α-glucosidase and α-amylase, respectively). The most active derivatives 16b, 16c, 16e and 16 k also revealed good in vivo hypoglycemic effect comparable to that of rosiglitazone. In addition, compounds 16b and 16c had the best COX-2 selectivity index (S.I. = 18.7, 31.7, respectively) compared to celecoxib (S.I. = 10.3). In vivo anti-inflammatory activity of the target derivatives 16b, 16c, 16e and 16 k supported the results of in vitro screening as the derivatives 16b and 16c (ED50 = 8.2 and 24 mg/kg, respectively) were more potent than celecoxib (ED50 = 30 mg/kg). In silico docking, ADME, toxicity, and molecular dynamic studies were carried out to explain the interactions of the most active anti-diabetic and anti-inflammatory compounds 16b, 16c, 16e and 16 k with the target enzymes in addition to their physiochemical parameters.

3.
Bioorg Chem ; 145: 107234, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38412650

RESUMEN

Two new series of N-aryl acetamides 6a-o and benzyloxy benzylidenes 9a-p based 2-oxoindole derivatives were designed as potent antiproliferative multiple kinase inhibitors. The results of one-dose NCI antiproliferative screening for compounds 6a-o and 9a-p elucidated that the most promising antiproliferative scaffolds were 6f and 9f, which underwent five-dose testing. Notably, the amido congener 6f was the most potent derivative towards pancreatic ductal adenocarcinoma MDA-PATC53 and PL45 cell lines (IC50 = 1.73 µM and 2.40 µM, respectively), and the benzyloxy derivative 9f was the next potent one with IC50 values of 2.85 µM and 2.96 µM, respectively. Both compounds 6f and 9f demonstrated a favorable safety profile when tested against normal prostate epithelial cells (RWPE-1). Additionally, compound 6f displayed exceptional selectivity as a multiple kinase inhibitor, particularly targeting PDGFRα, PDGFRß, and VEGFR-2 kinases, with IC50 values of 7.41 nM, 6.18 nM, and 7.49 nM, respectively. In contrast, the reference compound Sunitinib exhibited IC50 values of 43.88 nM, 2.13 nM, and 78.46 nM against the same kinases. The derivative 9f followed closely, with IC50 values of 9.9 nM, 6.62 nM, and 22.21 nM for the respective kinases. Both 6f and 9f disrupt the G2/M cell cycle transition by upregulating p21 and reducing CDK1 and cyclin B1 mRNA levels. The interplay between targeted kinases and these cell cycle regulators underpins the G2/M cell cycle arrest induced by our compounds. Also, compounds 6f and 9f fundamentally resulted in entering MDA-PATC53 cells into the early stage of apoptosis with good percentages compared to the positive control Sunitinib. The in silico molecular-docking outcomes of scaffolds 6a-o and 9a-p in VEGFR-2, PDGFRα, and PDGFRß active sites depicted their ability to adopt essential binding interactions like the reference Sunitinib. Our designed analogs, specifically 6f and 9f, possess promising antiproliferative and kinase inhibitory properties, making them potential candidates for further therapeutic development.


Asunto(s)
Antineoplásicos , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas , Sunitinib/farmacología , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Línea Celular Tumoral , Proliferación Celular , Antineoplásicos/farmacología , Antineoplásicos/química , Inhibidores de la Angiogénesis/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Simulación del Acoplamiento Molecular , Ensayos de Selección de Medicamentos Antitumorales , Relación Estructura-Actividad , Estructura Molecular
4.
Molecules ; 29(3)2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38338448

RESUMEN

Coleus forskohlii (Willd.) Briq. is a medicinal herb of the Lamiaceae family. It is native to India and widely present in the tropical and sub-tropical regions of Egypt, China, Ethiopia, and Pakistan. The roots of C. forskohlii are edible, rich with pharmaceutically bioactive compounds, and traditionally reported to treat a variety of diseases, including inflammation, respiratory disorders, obesity, and viral ailments. Notably, the emergence of viral diseases is expected to quickly spread; consequently, these data impose a need for various approaches to develop broad active therapeutics for utilization in the management of future viral infectious outbreaks. In this study, the naturally occurring labdane diterpenoid derivative, Forskolin, was obtained from Coleus forskohlii. Additionally, we evaluated the antiviral potential of Forskolin towards three viruses, namely the herpes simplex viruses 1 and 2 (HSV-1 and HSV-2), hepatitis A virus (HAV), and coxsackievirus B4 (COX-B4). We observed that Forskolin displayed antiviral activity against HAV, COX-B4, HSV-1, and HSV-2 with IC50 values of 62.9, 73.1, 99.0, and 106.0 µg/mL, respectively. Furthermore, we explored the Forskolin's potential antiviral target using PharmMapper, a pharmacophore-based virtual screening platform. Forskolin's modeled structure was analyzed to identify potential protein targets linked to its antiviral activity, with results ranked based on Fit scores. Cathepsin L (PDB ID: 3BC3) emerged as a top-scoring hit, prompting further exploration through molecular docking and MD simulations. Our analysis revealed that Forskolin's binding mode within Cathepsin L's active site, characterized by stable hydrogen bonding and hydrophobic interactions, mirrors that of a co-crystallized inhibitor. These findings, supported by consistent RMSD profiles and similar binding free energies, suggest Forskolin's potential in inhibiting Cathepsin L, highlighting its promise as an antiviral agent.


Asunto(s)
Herpesvirus Humano 1 , Colforsina/farmacología , Colforsina/química , Catepsina L , Simulación del Acoplamiento Molecular , Herpesvirus Humano 1/metabolismo , Antivirales/farmacología , Antivirales/química
5.
Bioorg Chem ; 134: 106444, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36893547

RESUMEN

The present study established thirteen novel 8-hydroxyquinoline/chalcone hybrids3a-mof hopeful anticancer activity. According to NCI screening and MTT assay results, compounds3d-3f, 3i,3k,and3ldisplayed potent growth inhibition on HCT116 and MCF7 cells compared to Staurosporine. Among these compounds,3eand3fshowed outstanding superior activity against HCT116 and MCF7 cells and better safety toward normal WI-38 cells than Staurosporine. The enzymatic assay revealed that3e,3d, and3ihad goodtubulin polymerization inhibition (IC50 = 5.3, 8.6, and 8.05 µM, respectively) compared to the reference Combretastatin A4 (IC50 = 2.15 µM). Moreover,3e,3l, and3fexhibited EGFR inhibition (IC50 = 0.097, 0.154, and 0.334 µM, respectively) compared to Erlotinib (IC50 = 0.056 µM). Compounds3eand3fwere investigated for their effects on the cell cycle, apoptosis induction, andwnt1/ß-cateningene suppression. The apoptosis markers Bax, Bcl2, Casp3, Casp9, PARP1, and ß-actin were detected by Western blot. In-silico molecular docking, physicochemical, and pharmacokinetic studies were implemented for the validation of dual mechanisms and other bioavailability standards. Hence, Compounds3eand3fare promising antiproliferative leads with tubulin polymerization and EGFR kinase inhibition.


Asunto(s)
Antineoplásicos , Chalcona , Chalconas , Humanos , Simulación del Acoplamiento Molecular , Chalcona/química , Chalconas/farmacología , Tubulina (Proteína)/metabolismo , Relación Estructura-Actividad , Oxiquinolina/farmacología , Estaurosporina/farmacología , Apoptosis , Moduladores de Tubulina , Antineoplásicos/química , Receptores ErbB , Ensayos de Selección de Medicamentos Antitumorales , Proliferación Celular , Estructura Molecular
6.
Mol Divers ; 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36790582

RESUMEN

New 3-substituted oxindole derivatives were designed and synthesized as antiproliferative agents. The antiproliferative activity of compounds 6a-j was evaluated against 60 NCI cell lines. Among these tested compounds, compounds 6f and 6g showed remarkable antiproliferative activity, specifically against leukemia and breast cancer cell lines. Compound 6f was the most promising antiproliferative agent against MCF-7 (human breast cancer) with an IC50 value of 14.77 µM compared to 5-fluorouracil (5FU) (IC50 = 2.02 µM). Notably, compound 6f hampered receptor tyrosine EGFR fundamentally with an IC50 value of 1.38 µM, compared to the reference sunitinib with an IC50 value of 0.08 µM. Moreover, compound 6f afforded anti-tubulin polymerization activity with an IC50 value of 7.99 µM as an outstanding observable activity compared with the reference combretastatin A4 with an IC50 value of 2.64 µM. In silico molecular-docking results of compound 6f in the ATP-binding site of EGFR agreed with the in vitro results. Besides, the investigation of the physicochemical properties of compound 6f via the egg-boiled method clarified good lipophilicity, GIT absorption, and blood-brain barrier penetration properties.

7.
Exp Parasitol ; 254: 108631, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37820894

RESUMEN

Schistosomiasis is the second most prevailing parasitic disease worldwide. Although praziquantel is considered an effective drug in the treatment against schistosomiasis to some extent, there is an emerging drug resistance that widely recorded. Therefore, there is an urgent need to develop effective and safe anti-schistosomal drugs. In this study, Cornulaca monacantha (C. monacantha), a sub-saharan plant, was extracted using aqueous ethanol and characterized by High-Performance Liquid Chromatography (HPLC). Major constituents of the extract are belonging to flavonoids, tannins and phenolic glycosides. Worms' viability and surface morphology of Schistosoma mansoni (S. mansoni) adult worms treated with the extract were assessed using in vitro viability assay, Scanning Electron Microscopy (SEM), and histological examination. The extract (80-350 µg/ml) reduced viability percentage of worms by 40-60% and caused degeneration of both oral and ventral suckers, tegumental, sub-tegumental and muscular damage. Molecular docking approach was utilized to assess the binding affinities of the extracted compounds with S. mansoni alpha-carbonic anhydrase (SmCA), an essential tegument protein. Pharmacokinetic analysis using SwissADME showed that 7 compounds have high drug similarity. This study confirms the in vitro schistomicidal activity of C. monacantha extract against S. mansoni adult worms and suggests potential SmCA inhibition.


Asunto(s)
Esquistosomiasis mansoni , Esquistosomiasis , Animales , Simulación del Acoplamiento Molecular , Schistosoma mansoni , Praziquantel/farmacología , Microscopía Electrónica de Rastreo , Esquistosomiasis mansoni/tratamiento farmacológico
8.
J Enzyme Inhib Med Chem ; 38(1): 2199950, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37080775

RESUMEN

Trypanosomiasis is a protozoan disease transmitted via Trypanosoma brucei. This study aimed to examine the metabolic profile and anti-trypanosomal effect of methanol extract of Thunbergia grandifolia leaves. The liquid chromatography-high resolution electrospray ionisation mass spectrometry (LC-HRESIMS) revealed the identification of fifteen compounds of iridoid, flavonoid, lignan, phenolic acid, and alkaloid classes. The extract displayed a promising inhibitory activity against T. brucei TC 221 with MIC value of 1.90 µg/mL within 72 h. A subsequent in silico analysis of the dereplicated compounds (i.e. inverse docking, molecular dynamic simulation, and absolute binding free energy) suggested both rhodesain and farnesyl diphosphate synthase as probable targets for two compounds among those dereplicated ones in the plant extract (i.e. diphyllin and avacennone B). The absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiling of diphyllin and avacennone were calculated accordingly, where both compounds showed acceptable drug-like properties. This study highlighted the antiparasitic potential of T. grandifolia leaves.


Asunto(s)
Acanthaceae , Lignanos , Trypanosoma brucei brucei , Simulación del Acoplamiento Molecular , Lignanos/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química
9.
Mar Drugs ; 20(10)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36286452

RESUMEN

In this study, the LC-HRMS-assisted chemical profiling of Hyrtios erectus sponge led to the annotation of eleven major compounds (1-11). H. erectus-derived crude extract (HE) was tested in vitro for its antiproliferative activity against three human cancer cell lines, Hep-G2 (human liver cancer cell line), MCF-7 (breast cancer cell line), and Caco-2 (colon cancer cell line), before and after encapsulation within niosomes. Hyrtios erectus extract showed moderate in vitro antiproliferative activities towards the studied cell lines with IC50 values 18.5 ± 0.08, 15.2 ± 0.11, and 13.4 ± 0.12, respectively. The formulated extract-containing niosomes (size 142.3 ± 10.3 nm, PDI 0.279, and zeta potential 22.8 ± 1.6) increased the in vitro antiproliferative activity of the entrapped extract significantly (IC50 8.5 ± 0.04, 4.1 ± 0.07, and 3.4 ± 0.05, respectively). A subsequent computational chemical study was performed to build a sponge-metabolite-targets-cancer diseases network, by focusing on targets that possess anticancer activity toward the three cancer types: breast, colon, and liver. Pubchem, BindingDB, and DisGenet databases were used to build the network. Shinygo and KEGG databases in addition to FunRich software were used for gene ontology and functional analysis. The computational analysis linked the metabolites to 200 genes among which 147 genes related to cancer and only 64 genes are intersected in the three cancer types. The study proved that the co-occurrence of compounds 1, 2, 3, 7, 8, and 10 are the most probable compounds possessing cytotoxic activity due to large number of connections to the intersected cytotoxic genes with edges range from 9-14. The targets possess the anticancer effect through Pathways in cancer, Endocrine resistance and Proteoglycans in cancer as mentioned by KEGG and ShinyGo 7.1 databases. This study introduces niosomes as a promising strategy to promote the cytotoxic potential of H. erectus extract.


Asunto(s)
Antineoplásicos , Liposomas , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Células CACO-2 , Mezclas Complejas , Océano Índico , Proteoglicanos , Poríferos
10.
Mar Drugs ; 20(3)2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35323462

RESUMEN

The COVID-19 pandemic and its continuing emerging variants emphasize the need to discover appropriate treatment, where vaccines alone have failed to show complete protection against the new variants of the virus. Therefore, treatment of the infected cases is critical. This paper discusses the bio-guided isolation of three indole diketopiperazine alkaloids, neoechinulin A (1), echinulin (2), and eurocristatine (3), from the Red Sea-derived Aspergillus fumigatus MR2012. Neoechinulin A (1) exhibited a potent inhibitory effect against SARS-CoV-2 Mpro with IC50 value of 0.47 µM, which is comparable to the reference standard GC376. Despite the structural similarity between the three compounds, only 1 showed a promising effect. The mechanism of inhibition is discussed in light of a series of extensive molecular docking, classical and steered molecular dynamics simulation experiments. This paper sheds light on indole diketopiperazine alkaloids as a potential structural motif against SARS-CoV-2 Mpro. Additionally, it highlights the potential of different molecular docking and molecular dynamics simulation approaches in the discrimination between active and inactive structurally related Mpro inhibitors.


Asunto(s)
Antivirales/química , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Inhibidores de Cisteína Proteinasa/química , Alcaloides Indólicos/química , Piperazinas/química , SARS-CoV-2/enzimología , Alcaloides/química , Alcaloides/aislamiento & purificación , Antivirales/aislamiento & purificación , Aspergillus fumigatus/química , Inhibidores de Cisteína Proteinasa/aislamiento & purificación , Alcaloides Indólicos/aislamiento & purificación , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Piperazinas/aislamiento & purificación
11.
Mar Drugs ; 20(3)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35323478

RESUMEN

Several natural products recovered from a marine-derived Aspergillus niger were tested for their inhibitory activity against SARS CoV-2 in vitro. Aurasperone A (3) was found to inhibit SARS CoV-2 efficiently (IC50 = 12.25 µM) with comparable activity with the positive control remdesivir (IC50 = 10.11 µM). Aurasperone A exerted minimal cytotoxicity on Vero E6 cells (CC50 = 32.36 mM, SI = 2641.5) and it was found to be much safer than remdesivir (CC50 = 415.22 µM, SI = 41.07). To putatively highlight its molecular target, aurasperone A was subjected to molecular docking against several key-viral protein targets followed by a series of molecular dynamics-based in silico experiments that suggested Mpro to be its primary viral protein target. More potent anti-SARS CoV-2 Mpro inhibitors can be developed according to our findings presented in the present investigation.


Asunto(s)
Antivirales/farmacología , Cromonas/farmacología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Inhibidores de Proteasas/farmacología , SARS-CoV-2/efectos de los fármacos , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Alanina/análogos & derivados , Alanina/farmacología , Animales , Antivirales/aislamiento & purificación , Aspergillus niger/química , Chlorocebus aethiops , Cromonas/aislamiento & purificación , Proteasas 3C de Coronavirus/metabolismo , Proteasas Similares a la Papaína de Coronavirus/metabolismo , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas/aislamiento & purificación , ARN Helicasas/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Vero
12.
Mar Drugs ; 20(10)2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36286462

RESUMEN

The protective and therapeutic anti-inflammatory and antioxidant potency of Malapterurus electricus (F. Malapteruridae) skin fish methanolic extract (FE) (300 mg/kg.b.wt/day for 7 days, orally) was tested in monosodium urate(MSU)-induced arthritic Wistar albino male rats' joints. Serum uric acid, TNF-α, IL-1ß, NF-𝜅B, MDA, GSH, catalase, SOD, and glutathione reductase levels were all measured. According to the findings, FE significantly reduced uric acid levels and ankle swelling in both protective and therapeutic groups. Furthermore, it has anti-inflammatory effects by downregulating inflammatory cytokines, primarily through decreased oxidative stress and increased antioxidant status. All the aforementioned lesions were significantly improved in protected and treated rats with FE, according to histopathological findings. iNOS immunostaining revealed that protected and treated arthritic rats with FE had weak positive immune-reactive cells. Phytochemical analysis revealed that FE was high in fatty and amino acids. The most abundant compounds were vaccenic (24.52%), 9-octadecenoic (11.66%), palmitic (34.66%), stearic acids (14.63%), glycine (0.813 mg/100 mg), and alanine (1.645 mg/100 mg). Extensive molecular modelling and dynamics simulation experiments revealed that compound 4 has the potential to target and inhibit COX isoforms with a higher affinity for COX-2. As a result, we contend that FE could be a promising protective and therapeutic option for arthritis, aiding in the prevention and progression of this chronic inflammatory disease.


Asunto(s)
Antioxidantes , Ácido Úrico , Ratas , Animales , Antioxidantes/metabolismo , Catalasa , Factor de Necrosis Tumoral alfa/metabolismo , Ciclooxigenasa 2 , Metanol , Glutatión Reductasa , Ratas Wistar , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Citocinas/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Fitoquímicos , Superóxido Dismutasa , Ácidos Esteáricos , Alanina , Glicina , Aminoácidos
13.
Phytother Res ; 36(1): 488-505, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34939704

RESUMEN

This study targeted to examine the protective effects of acetovanillone (AV) against methotrexate (MTX)-induced hepatotoxicity. Thirty-two rats were allocated into four groups of eight animals; Group 1: Normal; Group 2: administered AV (100 ml/kg; P.O.) for 10 days; Group 3: challenged with MTX (20 mg/kg, i.p; single dose); Group 4: administered AV 5 days before and 5 days after MTX. For the first time, this study affords evidence for AV's hepatoprotective effects on MTX-induced hepatotoxicity. The underlined mechanisms behind its hepatic protection include counteracting MTX-induced oxidative injury via down-regulation of NADPH oxidase and up-regulation of Nrf2/ARE, SIRT1, PPARγ, and cytoglobin signals. Additionally, AV attenuated hepatic inflammation through down-regulation of IL-6/STAT-3 and NF-κB/AP-1 signaling. Network pharmacology analysis exhibited a high enrichment score between the interacting proteins and strongly suggested the intricate and essential role of the target proteins regulating MTX-induced oxidative damage and inflammatory perturbation. Besides, AV increased the in vitro cytotoxic activity of MTX toward PC-3, HeLa, and K562 cancer cell lines. On the whole, our investigation suggested that AV might be regarded as a promising adjuvant for the amelioration of MTX hepatotoxicity and/or increased its in vitro antitumor efficacy, and it could be used in patients receiving MTX.


Asunto(s)
Factor 2 Relacionado con NF-E2 , FN-kappa B , Acetofenonas , Animales , Interleucina-6 , Metotrexato/toxicidad , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Farmacología en Red , Ratas , Ratas Wistar , Transducción de Señal , Factor de Transcripción AP-1
14.
Arch Pharm (Weinheim) ; 355(12): e2200360, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36029269

RESUMEN

Bacterial resistance is spreading in an alarming manner, outpacing the rate of development of new antibacterial agents and surging the need for effective alternatives. Prenylated flavonoids are a promising class of natural antibiotics with reported activity against a wide range of resistant pathogens. Here, a large library of natural flavonoids (1718 structures) was virtually screened for potential candidates inhibiting the B-subunit of gyrase (Gyr-B). Twenty-eight candidates, predominated by prenylated flavonoids, appeared as promising hits. Six of them were selected for further in vitro antibacterial and Gyr-B enzyme inhibitory activities. Auriculasin is presented as the most potent antibacterial candidate, with a MIC ranging from 2 to 4 µg/ml against two clinically isolated multidrug-resistant Escherichia coli strains. Mechanistic antibacterial analysis revealed auriculasin inhibitory activity towards the Gyr-B enzyme on the micromolar scale (IC50 = 0.38 ± 0.15 µM). Gyr-B interaction was further detailed by conducting an isothermal titration calorimetric experiment, which revealed a competitive inhibition with a high affinity for the Gyr-B active site, achieved mostly through enthalpic interactions (ΔGbinding = -10.69 kcal/mol). Molecular modeling and physics-based simulations demonstrated the molecule's manner of fitting inside the Gyr-B active site, indicating a very potential nucleus for the future generation of more potent derivatives. To conclude, prenylated flavonoids are interesting antibacterial candidates with anti-Gyr-B mechanism of action that can be obtained from a plant-derived flavonoid.


Asunto(s)
Escherichia coli , Flavonoides , Flavonoides/farmacología , Flavonoides/química , Relación Estructura-Actividad , Antibacterianos/farmacología , Antibacterianos/química , Pruebas de Sensibilidad Microbiana
15.
Molecules ; 27(17)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36080381

RESUMEN

Malaria is one of the most important infectious diseases worldwide. The causative of the most severe forms of malaria, Plasmodium falciparum, has developed resistances against all the available antimalarial drugs. In the present study, the phytochemical investigation of the green seaweed Halimeda macroloba has afforded two new compounds 1-2, along with 4 known ones 3-6. The structures of the compounds had been confirmed using 1& 2D-NMR and HRESIMS analyses. Extensive machine-learning-supported virtual-screening suggested cytochrome-C enzyme as a potential target for compound 2. Docking, absolute-binding-free-energy (ΔGbinding) and molecular-dynamics-simulation (MDS) of compound 2 revealed the strong binding interaction of this compound with cytochrome-C. In vitro testing for crude extract and isolated compounds revealed the potential in vitro inhibitory activity of both extract and compound 2 against P. falciparum. The crude extract was able to inhibit the parasite growth with an IC50 value of 1.8 ± 0.35 µg/mL. Compound 2 also showed good inhibitory activity with an IC50 value of 3.2 ± 0.23 µg/mL. Meanwhile, compound 6 showed moderate inhibitory activity with an IC50 value of 19.3 ± 0.51 µg/mL. Accordingly, the scaffold of compound 2 can be considered as a good lead compound for the future development of new antimalarial agents.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , Algas Marinas , Antimaláricos/química , Citocromos , Humanos , Malaria/tratamiento farmacológico , Malaria Falciparum/tratamiento farmacológico , Extractos Vegetales/química , Plasmodium falciparum
16.
Molecules ; 27(5)2022 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-35268806

RESUMEN

Growing data suggest that Aspergillus niger, an endophytic fungus, is a rich source of natural compounds with a wide range of biological properties. This study aimed to examine the antimicrobial and antibiofilm capabilities of the Phragmites australis-derived endophyte against a set of pathogenic bacteria and fungi. The endophytic fungus Aspergillus sp. AP5 was isolated from the leaves of P. australis. The chemical profile of the fungal crude extract was identified by spectroscopic analysis using LC-HRESIMS. The fungal-derived extract was evaluated for its antimicrobial activity towards a set of pathogenic bacterial and fungal strains including Staphylococcus aureus, Pseudomonas aeruginosa, Proteus vulgaris, Klebsiella sp., Candida albicans, and Aspergillus niger. Moreover, antibiofilm activity toward four resistant biofilm-forming bacteria was also evaluated. Additionally, a neural-networking pharmacophore-based visual screening predicted the most probable bioactive compounds in the obtained extract. The AP5-EtOAc extract was found to have potent antibacterial activities against S. aureus, E. coli, and Klebsiella sp., while it exhibited low antibacterial activity toward P. Vulgaris and P. aeruginosa and displayed anticandidal activity. The AP5-EtOAc extract had significant antibiofilm activity in S. aureus, followed by P. aeruginosa. The active metabolites' antifungal and/or antibacterial activities may be due to targeting the fungal CYP 51 and/or the bacterial Gyr-B.


Asunto(s)
Antiinfecciosos , Staphylococcus aureus , Antibacterianos/química , Antibacterianos/farmacología , Antiinfecciosos/química , Antiinfecciosos/farmacología , Aspergillus niger , Biopelículas , Candida albicans , Escherichia coli , Hongos/química , Pruebas de Sensibilidad Microbiana
17.
Molecules ; 27(21)2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36364194

RESUMEN

Chemical investigation of the total extract of the Egyptian soft coral Heteroxenia fuscescens, led to the isolation of eight compounds, including two new metabolites, sesquiterpene fusceterpene A (1) and a sterol fuscesterol A (4), along with six known compounds. The structures of 1-8 were elucidated via intensive studies of their 1D, 2D-NMR, and HR-MS analyses, as well as a comparison of their spectral data with those mentioned in the literature. Subsequent comprehensive in-silico-based investigations against almost all viral proteins, including those of the new variants, e.g., Omicron, revealed the most probable target for these isolated compounds, which was found to be Mpro. Additionally, the dynamic modes of interaction of the putatively active compounds were highlighted, depending on 50-ns-long MDS. In conclusion, the structural information provided in the current investigation highlights the antiviral potential of H. fuscescens metabolites with 3ß,5α,6ß-trihydroxy steroids with different nuclei against SARS-CoV-2, including newly widespread variants.


Asunto(s)
Antozoos , Tratamiento Farmacológico de COVID-19 , Animales , SARS-CoV-2 , Antivirales/farmacología , Antivirales/química , Antozoos/química , Esteroles , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular
18.
Molecules ; 27(20)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36296628

RESUMEN

Aphthous ulcers are very common disorders among different age groups and are very noxious and painful. The incidence of aphthous ulcer recurrence is very high and it may even last for a maximum of 6 days and usually, patients cannot stand its pain. This study aims to prepare a buccoadhesive fast dissolving film containing Corchorus olitorius seed extract to treat recurrent minor aphthous ulceration (RMAU) in addition to clinical experiments on human volunteers. An excision wound model was used to assess the in vivo wound healing potential of Corchorus olitorius L. seed extract, with a focus on wound healing molecular targets such as TGF-, TNF-, and IL-1. In addition, metabolomic profiling using HR-LCMS for the crude extract of Corchorus olitorius seeds was explored. Moreover, molecular docking experiments were performed to elucidate the binding confirmation of the isolated compounds with three molecular targets (TNF-α, IL-1ß, and GSK3). Additionally, the in vitro antioxidant potential of C. olitorius seed extract using both H2O2 and superoxide radical scavenging activity was examined. Clinical experiments on human volunteers revealed the efficiency of the prepared C. olitorius seeds buccal fast dissolving film (CoBFDF) in relieving pain and wound healing of RMAU. Moreover, the wound healing results revealed that C. olitorius seed extract enhanced wound closure rates (p ≤ 0.001), elevated TGF-ß levels and significantly downregulated TNF-α and IL-1ß in comparison to the Mebo-treated group. The phenotypical results were supported by biochemical and histopathological findings, while metabolomic profiling using HR-LCMS for the crude extract of Corchorus olitorius seeds yielded a total of 21 compounds belonging to diverse chemical classes. Finally, this study highlights the potential of C. olitorius seed extract in wound repair uncovering the most probable mechanisms of action using in silico analysis.


Asunto(s)
Corchorus , Estomatitis Aftosa , Humanos , Corchorus/química , Estomatitis Aftosa/tratamiento farmacológico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Voluntarios Sanos , Factor de Necrosis Tumoral alfa , Superóxidos , Simulación del Acoplamiento Molecular , Glucógeno Sintasa Quinasa 3 , Peróxido de Hidrógeno , Extractos Vegetales/farmacología , Semillas , Dolor , Factor de Crecimiento Transformador beta , Interleucina-1
19.
Artículo en Inglés | MEDLINE | ID: mdl-36245569

RESUMEN

Coronavirus infection (COVID-19) is a considerably dangerous disease with a high demise rate around the world. There is no known vaccination or medicine until our time because the unknown aspects of the virus are more significant than our theoretical and experimental knowledge. One of the most effective strategies for comprehending and controlling the spread of this epidemic is to model it using a powerful mathematical model. However, mathematical modeling with a fractional operator can provide explanations for the disease's possibility and severity. Accordingly, basic information will be provided to identify the kind of measure and intrusion that will be required to control the disease's progress. In this study, we propose using a fractional-order SEIARPQ model with the Caputo sense to model the coronavirus (COVID-19) pandemic, which has never been done before in the literature. The stability analysis, existence, uniqueness theorems, and numerical solutions of such a model are displayed. All results were numerically simulated using MATLAB programming. The current study supports the applicability and influence of fractional operators on real-world problems.

20.
BMC Infect Dis ; 21(1): 1130, 2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34727869

RESUMEN

BACKGROUND: To investigate the knowledge, attitudes, and practices of the healthcare professionals (HCPs) including physicians and nurses regarding dengue transmission, diagnosis and clinical classification using the warning signs of World Health Organization (WHO) 2009 classification. RESULTS: Out of 471 respondents from three countries, 80.9% of physicians and 74% of nurses did not receive previous training regarding the dengue infection. The majority of respondents could identify the primary dengue vector (86%), while only a third of HCPs knew the biting time of dengue mosquitoes. Only half of our respondents knew about immunity induced by serotypes; Moreover, half of our participants could determine the diagnostic tests. On the other hand, about 90% of the respondents took responsibility for talking to the patients about preventive measures. Our respondents also showed wide variations in definition of warning signs listed in the WHO 2009 classification. Multivariate analysis linked the impact of different cofactors including prior training on dengue infection, type of profession, frequency of taking care of dengue patients and country on how HCPs defined these warning signs. CONCLUSIONS: This study could declare the variation in employing the warning signs listed in the WHO 2009 classification. We have figured that most of the HCPs did not take prior training on the dengue viral infection; Also, we found gaps in the knowledge regarding various topics in dengue fever. This paper recommends the gathering of efforts to establish the proper knowledge of dengue infection and the warning signs listed by the WHO.


Asunto(s)
Dengue , Conocimientos, Actitudes y Práctica en Salud , Animales , Dengue/diagnóstico , Personal de Salud , Humanos , Mosquitos Vectores , Encuestas y Cuestionarios
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA