Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(D1): D1220-D1229, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36305829

RESUMEN

The Chemical Functional Ontology (ChemFOnt), located at https://www.chemfont.ca, is a hierarchical, OWL-compatible ontology describing the functions and actions of >341 000 biologically important chemicals. These include primary metabolites, secondary metabolites, natural products, food chemicals, synthetic food additives, drugs, herbicides, pesticides and environmental chemicals. ChemFOnt is a FAIR-compliant resource intended to bring the same rigor, standardization and formal structure to the terms and terminology used in biochemistry, food chemistry and environmental chemistry as the gene ontology (GO) has brought to molecular biology. ChemFOnt is available as both a freely accessible, web-enabled database and a downloadable Web Ontology Language (OWL) file. Users may download and deploy ChemFOnt within their own chemical databases or integrate ChemFOnt into their own analytical software to generate machine readable relationships that can be used to make new inferences, enrich their omics data sets or make new, non-obvious connections between chemicals and their direct or indirect effects. The web version of the ChemFOnt database has been designed to be easy to search, browse and navigate. Currently ChemFOnt contains data on 341 627 chemicals, including 515 332 terms or definitions. The functional hierarchy for ChemFOnt consists of four functional 'aspects', 12 functional super-categories and a total of 173 705 functional terms. In addition, each of the chemicals are classified into 4825 structure-based chemical classes. ChemFOnt currently contains 3.9 million protein-chemical relationships and ∼10.3 million chemical-functional relationships. The long-term goal for ChemFOnt is for it to be adopted by databases and software tools used by the general chemistry community as well as the metabolomics, exposomics, metagenomics, genomics and proteomics communities.


Asunto(s)
Bases de Datos de Compuestos Químicos , Programas Informáticos , Bases de Datos Factuales , Ontología de Genes , Genómica , Proteómica
2.
Nucleic Acids Res ; 50(D1): D622-D631, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34986597

RESUMEN

The Human Metabolome Database or HMDB (https://hmdb.ca) has been providing comprehensive reference information about human metabolites and their associated biological, physiological and chemical properties since 2007. Over the past 15 years, the HMDB has grown and evolved significantly to meet the needs of the metabolomics community and respond to continuing changes in internet and computing technology. This year's update, HMDB 5.0, brings a number of important improvements and upgrades to the database. These should make the HMDB more useful and more appealing to a larger cross-section of users. In particular, these improvements include: (i) a significant increase in the number of metabolite entries (from 114 100 to 217 920 compounds); (ii) enhancements to the quality and depth of metabolite descriptions; (iii) the addition of new structure, spectral and pathway visualization tools; (iv) the inclusion of many new and much more accurately predicted spectral data sets, including predicted NMR spectra, more accurately predicted MS spectra, predicted retention indices and predicted collision cross section data and (v) enhancements to the HMDB's search functions to facilitate better compound identification. Many other minor improvements and updates to the content, the interface, and general performance of the HMDB website have also been made. Overall, we believe these upgrades and updates should greatly enhance the HMDB's ease of use and its potential applications not only in human metabolomics but also in exposomics, lipidomics, nutritional science, biochemistry and clinical chemistry.


Asunto(s)
Bases de Datos Genéticas , Metaboloma/genética , Metabolómica/clasificación , Humanos , Lipidómica/clasificación , Espectrometría de Masas , Interfaz Usuario-Computador
3.
Nucleic Acids Res ; 50(D1): D665-D677, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34791429

RESUMEN

The Natural Products Magnetic Resonance Database (NP-MRD) is a comprehensive, freely available electronic resource for the deposition, distribution, searching and retrieval of nuclear magnetic resonance (NMR) data on natural products, metabolites and other biologically derived chemicals. NMR spectroscopy has long been viewed as the 'gold standard' for the structure determination of novel natural products and novel metabolites. NMR is also widely used in natural product dereplication and the characterization of biofluid mixtures (metabolomics). All of these NMR applications require large collections of high quality, well-annotated, referential NMR spectra of pure compounds. Unfortunately, referential NMR spectral collections for natural products are quite limited. It is because of the critical need for dedicated, open access natural product NMR resources that the NP-MRD was funded by the National Institute of Health (NIH). Since its launch in 2020, the NP-MRD has grown quickly to become the world's largest repository for NMR data on natural products and other biological substances. It currently contains both structural and NMR data for nearly 41,000 natural product compounds from >7400 different living species. All structural, spectroscopic and descriptive data in the NP-MRD is interactively viewable, searchable and fully downloadable in multiple formats. Extensive hyperlinks to other databases of relevance are also provided. The NP-MRD also supports community deposition of NMR assignments and NMR spectra (1D and 2D) of natural products and related meta-data. The deposition system performs extensive data enrichment, automated data format conversion and spectral/assignment evaluation. Details of these database features, how they are implemented and plans for future upgrades are also provided. The NP-MRD is available at https://np-mrd.org.


Asunto(s)
Productos Biológicos/química , Bases de Datos Factuales , Espectroscopía de Resonancia Magnética , Programas Informáticos , Productos Biológicos/clasificación , Internet
4.
Nucleic Acids Res ; 46(D1): D1074-D1082, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29126136

RESUMEN

DrugBank (www.drugbank.ca) is a web-enabled database containing comprehensive molecular information about drugs, their mechanisms, their interactions and their targets. First described in 2006, DrugBank has continued to evolve over the past 12 years in response to marked improvements to web standards and changing needs for drug research and development. This year's update, DrugBank 5.0, represents the most significant upgrade to the database in more than 10 years. In many cases, existing data content has grown by 100% or more over the last update. For instance, the total number of investigational drugs in the database has grown by almost 300%, the number of drug-drug interactions has grown by nearly 600% and the number of SNP-associated drug effects has grown more than 3000%. Significant improvements have been made to the quantity, quality and consistency of drug indications, drug binding data as well as drug-drug and drug-food interactions. A great deal of brand new data have also been added to DrugBank 5.0. This includes information on the influence of hundreds of drugs on metabolite levels (pharmacometabolomics), gene expression levels (pharmacotranscriptomics) and protein expression levels (pharmacoprotoemics). New data have also been added on the status of hundreds of new drug clinical trials and existing drug repurposing trials. Many other important improvements in the content, interface and performance of the DrugBank website have been made and these should greatly enhance its ease of use, utility and potential applications in many areas of pharmacological research, pharmaceutical science and drug education.


Asunto(s)
Bases de Datos Farmacéuticas , Interacciones Farmacológicas , Interacciones Alimento-Droga , Metaboloma/efectos de los fármacos , Polimorfismo de Nucleótido Simple , Transcriptoma/efectos de los fármacos , Interfaz Usuario-Computador
5.
Nucleic Acids Res ; 46(D1): D608-D617, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29140435

RESUMEN

The Human Metabolome Database or HMDB (www.hmdb.ca) is a web-enabled metabolomic database containing comprehensive information about human metabolites along with their biological roles, physiological concentrations, disease associations, chemical reactions, metabolic pathways, and reference spectra. First described in 2007, the HMDB is now considered the standard metabolomic resource for human metabolic studies. Over the past decade the HMDB has continued to grow and evolve in response to emerging needs for metabolomics researchers and continuing changes in web standards. This year's update, HMDB 4.0, represents the most significant upgrade to the database in its history. For instance, the number of fully annotated metabolites has increased by nearly threefold, the number of experimental spectra has grown by almost fourfold and the number of illustrated metabolic pathways has grown by a factor of almost 60. Significant improvements have also been made to the HMDB's chemical taxonomy, chemical ontology, spectral viewing, and spectral/text searching tools. A great deal of brand new data has also been added to HMDB 4.0. This includes large quantities of predicted MS/MS and GC-MS reference spectral data as well as predicted (physiologically feasible) metabolite structures to facilitate novel metabolite identification. Additional information on metabolite-SNP interactions and the influence of drugs on metabolite levels (pharmacometabolomics) has also been added. Many other important improvements in the content, the interface, and the performance of the HMDB website have been made and these should greatly enhance its ease of use and its potential applications in nutrition, biochemistry, clinical chemistry, clinical genetics, medicine, and metabolomics science.


Asunto(s)
Bases de Datos Factuales , Metaboloma , Bases de Datos de Compuestos Químicos , Cromatografía de Gases y Espectrometría de Masas , Humanos , Redes y Vías Metabólicas , Metabolómica , Resonancia Magnética Nuclear Biomolecular , Espectrometría de Masas en Tándem , Interfaz Usuario-Computador
6.
Metabolites ; 14(5)2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38786767

RESUMEN

NMR is widely considered the gold standard for organic compound structure determination. As such, NMR is routinely used in organic compound identification, drug metabolite characterization, natural product discovery, and the deconvolution of metabolite mixtures in biofluids (metabolomics and exposomics). In many cases, compound identification by NMR is achieved by matching measured NMR spectra to experimentally collected NMR spectral reference libraries. Unfortunately, the number of available experimental NMR reference spectra, especially for metabolomics, medical diagnostics, or drug-related studies, is quite small. This experimental gap could be filled by predicting NMR chemical shifts for known compounds using computational methods such as machine learning (ML). Here, we describe how a deep learning algorithm that is trained on a high-quality, "solvent-aware" experimental dataset can be used to predict 1H chemical shifts more accurately than any other known method. The new program, called PROSPRE (PROton Shift PREdictor) can accurately (mean absolute error of <0.10 ppm) predict 1H chemical shifts in water (at neutral pH), chloroform, dimethyl sulfoxide, and methanol from a user-submitted chemical structure. PROSPRE (pronounced "prosper") has also been used to predict 1H chemical shifts for >600,000 molecules in many popular metabolomic, drug, and natural product databases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA