Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Plant Physiol ; 195(2): 1475-1490, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38324704

RESUMEN

Measurements of respiratory properties have often been made at a single time point either during daytime using dark-adapted leaves or during nighttime. The influence of the day-night cycle on respiratory metabolism has received less attention but is crucial to understand photosynthesis and photorespiration. Here, we examined how CO2- and O2-based rates of leaf dark respiration (Rdark) differed between midday (after 30-min dark adaptation) and midnight in 8 C3 and C4 grasses. We used these data to calculate the respiratory quotient (RQ; ratio of CO2 release to O2 uptake), and assessed relationships between Rdark and leaf metabolome. Rdark was higher at midday than midnight, especially in C4 species. The day-night difference in Rdark was more evident when expressed on a CO2 than O2 basis, with the RQ being higher at midday than midnight in all species, except in rice (Oryza sativa). Metabolomic analyses showed little correlation of Rdark or RQ with leaf carbohydrates (sucrose, glucose, fructose, or starch) but strong multivariate relationships with other metabolites. The results suggest that rates of Rdark and differences in RQ were determined by several concurrent CO2-producing and O2-consuming metabolic pathways, not only the tricarboxylic acid cycle (organic acids utilization) but also the pentose phosphate pathway, galactose metabolism, and secondary metabolism. As such, Rdark was time-, type- (C3/C4) and species-dependent, due to the use of different substrates.


Asunto(s)
Dióxido de Carbono , Respiración de la Célula , Hojas de la Planta , Poaceae , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Poaceae/fisiología , Poaceae/metabolismo , Dióxido de Carbono/metabolismo , Fotosíntesis , Oscuridad , Oxígeno/metabolismo , Metaboloma
2.
New Phytol ; 241(2): 715-731, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37932881

RESUMEN

Heat stress interrupts physiological thermostability and triggers biochemical responses that are essential for plant survival. However, there is limited knowledge on the speed plants adjust to heat in hours and days, and which adjustments are crucial. Tropical-subtropical rainforest tree species (Polyscias elegans) were heated at 40°C for 5 d, before returning to 25°C for 13 d of recovery. Leaf heat tolerance was quantified using the temperature at which minimal chl a fluorescence sharply rose (Tcrit ). Tcrit , metabolites, heat shock protein (HSP) abundance and membrane lipid fatty acid (FA) composition were quantified. Tcrit increased by 4°C (48-52°C) within 2 h of 40°C exposure, along with rapid accumulation of metabolites and HSPs. By contrast, it took > 2 d for FA composition to change. At least 2 d were required for Tcrit , HSP90, HSP70 and FAs to return to prestress levels. The results highlight the multi-faceted response of P. elegans to heat stress, and how this response varies over the scale of hours to days, culminating in an increased level of photosynthetic heat tolerance. These responses are important for survival of plants when confronted with heat waves amidst ongoing global climate change.


Asunto(s)
Termotolerancia , Proteínas de Choque Térmico/metabolismo , Plantas/metabolismo , Bosque Lluvioso , Temperatura , Árboles/metabolismo , Clima Tropical
3.
Plant Physiol ; 191(4): 2070-2083, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36638140

RESUMEN

A recent burst of technological innovation and adaptation has greatly improved our ability to capture respiration rate data from plant sources. At the tissue level, several independent respiration measurement options are now available, each with distinct advantages and suitability, including high-throughput sampling capacity. These advancements facilitate the inclusion of respiration rate data into large-scale biological studies such as genetic screens, ecological surveys, crop breeding trials, and multi-omics molecular studies. As a result, our understanding of the correlations of respiration with other biological and biochemical measurements is rapidly increasing. Difficult questions persist concerning the interpretation and utilization of respiration data; concepts such as allocation of respiration to growth versus maintenance, the unnecessary or inefficient use of carbon and energy by respiration, and predictions of future respiration rates in response to environmental change are all insufficiently grounded in empirical data. However, we emphasize that new experimental designs involving novel combinations of respiration rate data with other measurements will flesh-out our current theories of respiration. Furthermore, dynamic recordings of respiration rate, which have long been used at the scale of mitochondria, are increasingly being used at larger scales of size and time to reflect processes of cellular signal transduction and physiological response to the environment. We also highlight how respiratory methods are being better adapted to different plant tissues including roots and seeds, which have been somewhat neglected historically.


Asunto(s)
Fitomejoramiento , Plantas , Plantas/genética , Mitocondrias/metabolismo , Semillas , Respiración , Respiración de la Célula
4.
J Exp Bot ; 75(3): 962-978, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-37935881

RESUMEN

We examined photosynthetic traits of pre-existing and newly developed flag leaves of four wheat genotypes grown in controlled-environment experiments. In newly developed leaves, acclimation of the maximum rate of net CO2 assimilation (An) to warm nights (i.e. increased An) was associated with increased capacity of Rubisco carboxylation and photosynthetic electron transport, with Rubisco activation state probably contributing to increased Rubisco activity. Metabolite profiling linked acclimation of An to greater accumulation of monosaccharides and saturated fatty acids in leaves; these changes suggest roles for osmotic adjustment of leaf turgor pressure and maintenance of cell membrane integrity. By contrast, where An decreased under warm nights, the decline was related to lower stomatal conductance and rates of photosynthetic electron transport. Decreases in An occurred despite higher basal PSII thermal stability in all genotypes exposed to warm nights: Tcrit of 45-46.5 °C in non-acclimated versus 43.8-45 °C in acclimated leaves. Pre-existing leaves showed no change in An-temperature response curves, except for an elite heat-tolerant genotype. These findings illustrate the impact of night-time warming on the ability of wheat plants to photosynthesize during the day, thereby contributing to explain the impact of global warming on crop productivity.


Asunto(s)
Calor , Triticum , Triticum/genética , Ribulosa-Bifosfato Carboxilasa/metabolismo , Fotosíntesis/fisiología , Hojas de la Planta/metabolismo , Aclimatación , Dióxido de Carbono/metabolismo
5.
Physiol Plant ; 176(3): e14336, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38783514

RESUMEN

The tiller inhibition (tin) and Reduced height (Rht) genes strongly influence the carbon partitioning and architecture of wheat shoots, but their effects on the energy economy of roots have not been examined in detail. We examined multiple root traits in three sets of near-isogenic wheat lines (NILs) that differ in the tin gene or various dwarfing gene alleles (Rht-B1b, Rht-D1b, Rht-B1c and Rht-B1b + Rht-D1b) to determine their effects on root structure, anatomy and carbon allocation. The tin gene resulted in fewer tillers but more costly roots in an extreme tin phenotype with a Banks genetic background due to increases in root-to-shoot ratio, total root length, and whole root respiration. However, this effect depended on the genetic background as tin caused both smaller shoots and roots in a different genetic background. The semi-dwarf gene Rht-B1b caused few changes to the root structure, whereas Rht-D1b, Rht-B1c and the double dwarf (Rht-B1b + Rht-D1b) decreased the root biomass. Rht-B1c reduced the energy cost of roots by increasing specific root length, increasing the volume of cortical aerenchyma and by reducing root length, number, and biomass without affecting the root-to-shoot ratio. This work informs researchers using tin and Rht genes how to modify root system architecture to suit specific environments.


Asunto(s)
Fenotipo , Raíces de Plantas , Triticum , Triticum/genética , Triticum/crecimiento & desarrollo , Triticum/fisiología , Triticum/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/anatomía & histología , Raíces de Plantas/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Genes de Plantas/genética , Biomasa
6.
Plant Mol Biol ; 110(4-5): 347-363, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34997897

RESUMEN

KEY MESSAGE: A wild relative of rice from the Australian savannah was compared with cultivated rice, revealing thermotolerance in growth and photosynthetic processes and a more robust carbon economy in extreme heat. Above ~ 32 °C, impaired photosynthesis compromises the productivity of rice. We compared leaf tissues from heat-tolerant wild rice (Oryza australiensis) with temperate-adapted O. sativa after sustained exposure to heat, as well as diurnal heat shock. Leaf elongation and shoot biomass in O. australiensis were unimpaired at 45 °C, and soluble sugar concentrations trebled during 10 h of a 45 °C shock treatment. By contrast, 45 °C slowed growth strongly in O. sativa. Chloroplastic CO2 concentrations eliminated CO2 supply to chloroplasts as the basis of differential heat tolerance. This directed our attention to carboxylation and the abundance of the heat-sensitive chaperone Rubisco activase (Rca) in each species. Surprisingly, O. australiensis leaves at 45 °C had 50% less Rca per unit Rubisco, even though CO2 assimilation was faster than at 30 °C. By contrast, Rca per unit Rubisco doubled in O. sativa at 45 °C while CO2 assimilation was slower, reflecting its inferior Rca thermostability. Plants grown at 45 °C were simultaneously exposed to 700 ppm CO2 to enhance the CO2 supply to Rubisco. Growth at 45 °C responded to CO2 enrichment in O. australiensis but not O. sativa, reflecting more robust carboxylation capacity and thermal tolerance in the wild rice relative.


Asunto(s)
Oryza , Oryza/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Dióxido de Carbono , Temperatura , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Australia , Fotosíntesis
7.
Plant Cell Environ ; 45(4): 1257-1269, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35048399

RESUMEN

Our understanding of the regulation of respiration in C4 plants, where mitochondria play different roles in the different types of C4 photosynthetic pathway, remains limited. We examined how leaf dark respiration rates (Rdark ), in the presence and absence of added malate, vary in monocots representing the three classical biochemical types of C4 photosynthesis (NADP-ME, NAD-ME and PCK) using intact leaves and extracted bundle sheath strands. In particular, we explored to what extent rates of Rdark are associated with mitochondrial number, volume and ultrastructure. Based on examination of a single species per C4 type, we found that the respiratory response of NAD-ME and PCK type bundle sheath strands to added malate was associated with differences in mitochondrial number, volume, and/or ultrastructure, while NADP-ME type bundle sheath strands did not respond to malate addition. In general, mitochondrial traits reflected the contributions mitochondria make to photosynthesis in the three C4 types. However, despite the obvious differences in mitochondrial traits, no clear correlation was observed between these traits and Rdark . We suggest that Rdark is primarily driven by cellular maintenance demands and not mitochondrial composition per se, in a manner that is somewhat independent of mitochondrial organic acid cycling in the light.


Asunto(s)
Malato Deshidrogenasa , Malatos , Malato Deshidrogenasa/metabolismo , Malatos/metabolismo , Mitocondrias/metabolismo , NAD/metabolismo , NADP/metabolismo , Fotosíntesis , Hojas de la Planta/metabolismo , Frecuencia Respiratoria
8.
J Exp Bot ; 73(3): 915-926, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-34652413

RESUMEN

Warming nights are correlated with declining wheat growth and yield. As a key determinant of plant biomass, respiration consumes O2 as it produces ATP and releases CO2 and is typically reduced under warming to maintain metabolic efficiency. We compared the response of respiratory O2 and CO2 flux to multiple night and day warming treatments in wheat leaves and roots, using one commercial (Mace) and one breeding cultivar grown in controlled environments. We also examined the effect of night warming and a day heatwave on the capacity of the ATP-uncoupled alternative oxidase (AOX) pathway. Under warm nights, plant biomass fell, respiratory CO2 release measured at a common temperature was unchanged (indicating higher rates of CO2 release at prevailing growth temperature), respiratory O2 consumption at a common temperature declined, and AOX pathway capacity increased. The uncoupling of CO2 and O2 exchange and enhanced AOX pathway capacity suggest a reduction in plant energy demand under warm nights (lower O2 consumption), alongside higher rates of CO2 release under prevailing growth temperature (due to a lack of down-regulation of respiratory CO2 release). Less efficient ATP synthesis, teamed with sustained CO2 flux, could thus be driving observed biomass declines under warm nights.


Asunto(s)
Dióxido de Carbono , Triticum , Aclimatación/fisiología , Biomasa , Dióxido de Carbono/metabolismo , Fitomejoramiento , Hojas de la Planta/metabolismo , Temperatura
9.
Plant Cell Environ ; 44(7): 2090-2101, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33534189

RESUMEN

Mitochondrial respiration (R) is central to plant physiology and responds dynamically to daily short-term temperature changes. In the longer-term, changes in energy demand and membrane fluidity can decrease leaf R at a common temperature and increase the temperature at which leaf R peaks (Tmax ). However, leaf R functionality is more susceptible to short-term heatwaves. Catalysis increases with rising leaf temperature, driving faster metabolism and leaf R demand, despite declines in photosynthesis restricting assimilate supply and growth. Proteins denature as temperatures increase further, adding to maintenance costs. Excessive heat also inactivates respiratory enzymes, with a concomitant limitation on the capacity of the R system. These competing push-and-pull factors are responsible for the diminishing acceleration in leaf R rate as temperature rises. Under extreme heat, membranes become overly fluid, and enzymes such as the cytochrome c oxidase are impaired. Such changes can lead to over-reduction of the energy system culminating in reactive oxygen species production. This ultimately leads to the total breakdown of leaf R, setting the limit of leaf survival. Understanding the heat stress responses of leaf R is imperative, given the continued rise in frequency and intensity of heatwaves and the importance of R for plant fitness and survival.


Asunto(s)
Respuesta al Choque Térmico/fisiología , Hojas de la Planta/fisiología , Aclimatación , Respiración de la Célula , Oscuridad , Deshidratación , Calor , Luz , Mitocondrias/metabolismo , Fotosíntesis/fisiología
10.
Biochem J ; 477(19): 3885-3896, 2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-32959870

RESUMEN

Multiple studies have shown ribulose-1,5-bisphosphate carboxylase/oxygenase (E.C. 4.1.1.39; Rubisco) to be subject to Lys-acetylation at various residues; however, opposing reports exist about the biological significance of these post-translational modifications. One aspect of the Lys-acetylation that has not been addressed in plants generally, or with Rubisco specifically, is the stoichiometry at which these Lys-acetylation events occur. As a method to ascertain which Lys-acetylation sites on Arabidopsis Rubisco might be of regulatory importance to its catalytic function in the Calvin-Benson cycle, we purified Rubisco from leaves in both the day and night-time and performed independent mass spectrometry based methods to determine the stoichiometry of Rubisco Lys-acetylation events. The results indicate that Rubisco is acetylated at most Lys residues, but each acetylation event occurs at very low stoichiometry. Furthermore, in vitro treatments that increased the extent of Lys-acetylation on purified Rubisco had no effect on Rubisco maximal activity. Therefore, we are unable to confirm that Lys-acetylation at low stoichiometries can be a regulatory mechanism controlling Rubisco maximal activity. The results highlight the need for further use of stoichiometry measurements when determining the biological significance of reversible PTMs like acetylation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Fotosíntesis/fisiología , Hojas de la Planta/enzimología , Ribulosa-Bifosfato Carboxilasa/metabolismo , Acetilación , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Hojas de la Planta/genética , Ribulosa-Bifosfato Carboxilasa/genética
11.
J Biol Chem ; 294(47): 17931-17940, 2019 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-31530638

RESUMEN

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase (Rca) is a AAA+ enzyme that uses ATP to remove inhibitors from the active site of Rubisco, the central carboxylation enzyme of photosynthesis. Rca α and ß isoforms exist in most higher plant species, with the α isoform being identical to the ß form but having an additional 25-45 amino acids at the Rca C terminus, known as the C-terminal extension (CTE). Rca is inhibited by ADP, and the extent of ADP sensitivity of the Rca complex can be modulated by the CTE of the α isoform, particularly in relation to a disulfide bond structure that is specifically reduced by the redox-regulatory enzyme thioredoxin-f. Here, we introduced single point mutations of Lys-428 in the CTE of Rca-α from wheat (Triticum aestivum) (TaRca2-α). Substitution of Lys-428 with Arg dramatically altered ADP inhibition, independently of thioredoxin-f regulation. We determined that the reduction in ADP inhibition in the K428R variant is not due to a change in ADP affinity, as the apparent constant for ADP binding was not altered by the K428R substitution. Rather, we observed that the K428R substitution strongly increased ATP substrate affinity and ATP-dependent catalytic velocity. These results suggest that the Lys-428 residue is involved in interacting with the γ-phosphate of ATP. Considering that nucleotide-dependent Rca activity regulates Rubisco and thus photosynthesis during fluctuating irradiance, the K428R substitution could potentially provide a mechanism for boosting the performance of wheat grown in the dynamic light environments of the field.


Asunto(s)
Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Mutación Puntual/genética , Triticum/enzimología , Secuencia de Aminoácidos , Estabilidad de Enzimas , Cinética , Especificidad por Sustrato
12.
New Phytol ; 228(1): 56-69, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32415853

RESUMEN

Leaf respiration in the dark (Rdark ) is often measured at a single time during the day, with hot-acclimation lowering Rdark at a common measuring temperature. However, it is unclear whether the diel cycle influences the extent of thermal acclimation of Rdark , or how temperature and time of day interact to influence respiratory metabolites. To examine these issues, we grew rice under 25°C : 20°C, 30°C : 25°C and 40°C : 35°C day : night cycles, measuring Rdark and changes in metabolites at five time points spanning a single 24-h period. Rdark differed among the treatments and with time of day. However, there was no significant interaction between time and growth temperature, indicating that the diel cycle does not alter thermal acclimation of Rdark . Amino acids were highly responsive to the diel cycle and growth temperature, and many were negatively correlated with carbohydrates and with organic acids of the tricarboxylic acid (TCA) cycle. Organic TCA intermediates were significantly altered by the diel cycle irrespective of growth temperature, which we attributed to light-dependent regulatory control of TCA enzyme activities. Collectively, our study shows that environmental disruption of the balance between respiratory substrate supply and demand is corrected for by shifts in TCA-dependent metabolites.


Asunto(s)
Oryza , Dióxido de Carbono , Respiración de la Célula , Fotosíntesis , Hojas de la Planta , Frecuencia Respiratoria , Temperatura
13.
Plant Physiol ; 181(1): 43-54, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31189658

RESUMEN

The central enzyme of photosynthesis, Rubisco, is regulated by Rubisco activase (Rca). Photosynthesis is impaired during heat stress, and this limitation is often attributed to the heat-labile nature of Rca. We characterized gene expression and protein thermostability for the three Rca isoforms present in wheat (Triticum aestivum), namely TaRca1-ß, TaRca2-α, and TaRca2-ß. Furthermore, we compared wheat Rca with one of the two Rca isoforms from rice (Oryza sativa; OsRca-ß) and Rca from other species adapted to warm environments. The TaRca1 gene was induced, whereas TaRca2 was suppressed by heat stress. The TaRca2 isoforms were sensitive to heat degradation, with thermal midpoints of 35°C ± 0.3°C, the temperature at which Rubisco activation velocity by Rca was halved. By contrast, TaRca1-ß was more thermotolerant, with a thermal midpoint of 42°C, matching that of rice OsRca-ß. Mutations of the TaRca2-ß isoform based on sequence alignment of the thermostable TaRca1-ß from wheat, OsRca-ß from rice, and a consensus sequence representing Rca from warm-adapted species enabled the identification of 11 amino acid substitutions that improved its thermostability by greater than 7°C without a reduction in catalytic velocity at a standard 25°C. Protein structure modeling and mutational analysis suggested that the thermostability of these mutational variants arises from monomeric and not oligomeric thermal stabilization. These results provide a mechanism for improving the heat stress tolerance of photosynthesis in wheat and potentially other species, which is a desirable outcome considering the likelihood that crops will face more frequent heat stress conditions over the coming decades.


Asunto(s)
Fotosíntesis , Proteínas de Plantas/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Termotolerancia , Triticum/fisiología , Secuencia de Aminoácidos , Secuencia Conservada/genética , Respuesta al Choque Térmico , Calor , Isoenzimas , Proteínas de Plantas/genética , Ribulosa-Bifosfato Carboxilasa/genética , Alineación de Secuencia , Triticum/enzimología , Triticum/genética
14.
Plant Cell Environ ; 43(3): 594-610, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31860752

RESUMEN

To further our understanding of how sustained changes in temperature affect the carbon economy of rice (Oryza sativa), hydroponically grown plants of the IR64 cultivar were developed at 30°C/25°C (day/night) before being shifted to 25/20°C or 40/35°C. Leaf messenger RNA and protein abundance, sugar and starch concentrations, and gas-exchange and elongation rates were measured on preexisting leaves (PE) already developed at 30/25°C or leaves newly developed (ND) subsequent to temperature transfer. Following a shift in growth temperature, there was a transient adjustment in metabolic gene transcript abundance of PE leaves before homoeostasis was reached within 24 hr, aligning with Rdark (leaf dark respiratory CO2 release) and An (net CO2 assimilation) changes. With longer exposure, the central respiratory protein cytochrome c oxidase (COX) declined in abundance at 40/35°C. In contrast to Rdark , An was maintained across the three growth temperatures in ND leaves. Soluble sugars did not differ significantly with growth temperature, and growth was fastest with extended exposure at 40/35°C. The results highlight that acclimation of photosynthesis and respiration is asynchronous in rice, with heat-acclimated plants exhibiting a striking ability to maintain net carbon gain and growth when exposed to heat-wave temperatures, even while reducing investment in energy-conserving respiratory pathways.


Asunto(s)
Aclimatación/fisiología , Oryza/genética , Oryza/fisiología , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Temperatura , Aclimatación/efectos de la radiación , Biomasa , Dióxido de Carbono/metabolismo , Respiración de la Célula/genética , Respiración de la Célula/efectos de la radiación , Regulación hacia Abajo/genética , Regulación hacia Abajo/efectos de la radiación , Transporte de Electrón/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Ontología de Genes , Luz , Mitocondrias/metabolismo , Mitocondrias/efectos de la radiación , Oryza/efectos de la radiación , Fotosíntesis/efectos de la radiación , Hojas de la Planta/efectos de la radiación , Análisis de Componente Principal , Ribulosa-Bifosfato Carboxilasa/metabolismo , Regulación hacia Arriba/genética , Regulación hacia Arriba/efectos de la radiación
15.
New Phytol ; 218(2): 492-505, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29436710

RESUMEN

Globally, trees originating from high-rainfall tropical regions typically exhibit lower rates of light-saturated net CO2 assimilation (A) compared with those from high-rainfall temperate environments, when measured at a common temperature. One factor that has been suggested to contribute towards lower rates of A is lower mesophyll conductance. Using a combination of leaf gas exchange and carbon isotope discrimination measurements, we estimated mesophyll conductance (gm ) of several Australian tropical and temperate wet-forest trees, grown in a common environment. Maximum Rubisco carboxylation capacity, Vcmax , was obtained from CO2 response curves. gm and the drawdown of CO2 across the mesophyll were both relatively constant. Vcmax estimated on the basis of intercellular CO2 partial pressure, Ci , was equivalent to that estimated using chloroplastic CO2 partial pressure, Cc , using 'apparent' and 'true' Rubisco Michaelis-Menten constants, respectively Having ruled out gm as a possible factor in distorting variations in A between these tropical and temperate trees, attention now needs to be focused on obtaining more detailed information about Rubisco in these species.


Asunto(s)
Bosques , Células del Mesófilo/fisiología , Nitrógeno/metabolismo , Fotosíntesis , Árboles/fisiología , Clima Tropical , Dióxido de Carbono/metabolismo , Transporte de Electrón , Carácter Cuantitativo Heredable , Ribulosa-Bifosfato Carboxilasa/metabolismo , Especificidad de la Especie
16.
Glob Chang Biol ; 23(7): 2783-2800, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-27859952

RESUMEN

Understanding of the extent of acclimation of light-saturated net photosynthesis (An ) to temperature (T), and associated underlying mechanisms, remains limited. This is a key knowledge gap given the importance of thermal acclimation for plant functioning, both under current and future higher temperatures, limiting the accuracy and realism of Earth system model (ESM) predictions. Given this, we analysed and modelled T-dependent changes in photosynthetic capacity in 10 wet-forest tree species: six from temperate forests and four from tropical forests. Temperate and tropical species were each acclimated to three daytime growth temperatures (Tgrowth ): temperate - 15, 20 and 25 °C; tropical - 25, 30 and 35 °C. CO2 response curves of An were used to model maximal rates of RuBP (ribulose-1,5-bisphosphate) carboxylation (Vcmax ) and electron transport (Jmax ) at each treatment's respective Tgrowth and at a common measurement T (25 °C). SDS-PAGE gels were used to determine abundance of the CO2 -fixing enzyme, Rubisco. Leaf chlorophyll, nitrogen (N) and mass per unit leaf area (LMA) were also determined. For all species and Tgrowth , An at current atmospheric CO2 partial pressure was Rubisco-limited. Across all species, LMA decreased with increasing Tgrowth . Similarly, area-based rates of Vcmax at a measurement T of 25 °C (Vcmax25 ) linearly declined with increasing Tgrowth , linked to a concomitant decline in total leaf protein per unit leaf area and Rubisco as a percentage of leaf N. The decline in Rubisco constrained Vcmax and An for leaves developed at higher Tgrowth and resulted in poor predictions of photosynthesis by currently widely used models that do not account for Tgrowth -mediated changes in Rubisco abundance that underpin the thermal acclimation response of photosynthesis in wet-forest tree species. A new model is proposed that accounts for the effect of Tgrowth -mediated declines in Vcmax25 on An , complementing current photosynthetic thermal acclimation models that do not account for T sensitivity of Vcmax25 .


Asunto(s)
Aclimatación , Bosques , Fotosíntesis , Dióxido de Carbono , Hojas de la Planta , Ribulosa-Bifosfato Carboxilasa , Árboles
17.
New Phytol ; 211(3): 899-911, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27145723

RESUMEN

The mechanistic basis of tolerance to heat stress was investigated in Oryza sativa and two wild rice species, Oryza meridionalis and Oryza australiensis. The wild relatives are endemic to the hot, arid Australian savannah. Leaf elongation rates and gas exchange were measured during short periods of supra-optimal heat, revealing species differences. The Rubisco activase (RCA) gene from each species was sequenced. Using expressed recombinant RCA and leaf-extracted RCA, the kinetic properties of the two isoforms were studied under high temperatures. Leaf elongation was undiminished at 45°C in O. australiensis. The net photosynthetic rate was almost 50% slower in O. sativa at 45°C than at 28°C, while in O. australiensis it was unaffected. Oryza meridionalis exhibited intermediate heat tolerance. Based on previous reports that RCA is heat-labile, the Rubisco activation state was measured. It correlated positively with leaf elongation rates across all three species and four periods of exposure to 45°C. Sequence analysis revealed numerous polymorphisms in the RCA amino acid sequence from O. australiensis. The O. australiensis RCA enzyme was thermally stable up to 42°C, contrasting with RCA from O. sativa, which was inhibited at 36°C. We attribute heat tolerance in the wild species to thermal stability of RCA, enabling Rubisco to remain active.


Asunto(s)
Oryza/enzimología , Oryza/fisiología , Proteínas de Plantas/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Termotolerancia/fisiología , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Activación Enzimática , Estabilidad de Enzimas , Genes de Plantas , Genotipo , Calor , Hidrólisis , Oryza/genética , Fotosíntesis , Proteínas de Plantas/genética , Estomas de Plantas/fisiología , Proteínas Recombinantes/metabolismo , Ribulosa-Bifosfato Carboxilasa/química , Ribulosa-Bifosfato Carboxilasa/genética , Alineación de Secuencia , Especificidad de la Especie
18.
Proteomics ; 13(12-13): 1922-33, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23580440

RESUMEN

Low root temperature causes a decrease in water uptake, which leads to mineral and nutrient deficiencies with potentially decreased root and shoot growth. Differential temperature effects in plants have been studied extensively, however, the effect of root chilling on the global protein expression in shoots has not been explored. In this study, we imposed chilling temperatures on roots of rice plants while maintaining shoots at optimum atmospheric temperature. Shoot materials (growing zones and leaves) were harvested at five points over a time course of four days, including a two-day recovery period. Proteins were quantified by tandem mass tags and triple stage MS, using a method developed to overcome ratio compression in isobaric-labelled quantitation. Over 3000 proteins in each of the tissues were quantified by multiple peptides. Proteins significantly differentially expressed as compared with the control included abscisic acid-responsive and drought-associated proteins. The data also contained evidence of a possible induction of a sugar signalling pathway.


Asunto(s)
Oryza/fisiología , Proteínas de Plantas/análisis , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Plantones/metabolismo , Frío , Respuesta al Choque por Frío , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/química , Proteínas de Plantas/clasificación , Proteínas de Plantas/metabolismo , Brotes de la Planta/química , Proteómica , Transducción de Señal , Espectrometría de Masas en Tándem
19.
Nat Commun ; 14(1): 2820, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37198175

RESUMEN

Net photosynthetic CO2 assimilation rate (An) decreases at leaf temperatures above a relatively mild optimum (Topt) in most higher plants. This decline is often attributed to reduced CO2 conductance, increased CO2 loss from photorespiration and respiration, reduced chloroplast electron transport rate (J), or deactivation of Ribulose-1,5-bisphosphate Carboxylase Oxygenase (Rubisco). However, it is unclear which of these factors can best predict species independent declines in An at high temperature. We show that independent of species, and on a global scale, the observed decline in An with rising temperatures can be effectively accounted for by Rubisco deactivation and declines in J. Our finding that An declines with Rubisco deactivation and J supports a coordinated down-regulation of Rubisco and chloroplast electron transport rates to heat stress. We provide a model that, in the absence of CO2 supply limitations, can predict the response of photosynthesis to short-term increases in leaf temperature.


Asunto(s)
Dióxido de Carbono , Ribulosa-Bifosfato Carboxilasa , Transporte de Electrón/fisiología , Temperatura , Ribulosa-Bifosfato Carboxilasa/metabolismo , Fotosíntesis/fisiología , Plantas/metabolismo , Cloroplastos/metabolismo , Hojas de la Planta/metabolismo
20.
Physiol Plant ; 146(1): 99-109, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22324885

RESUMEN

Oryza meridionalis is a wild species of rice, endemic to tropical Australia. It shares a significant genome homology with the common domesticated rice Oryza sativa. Exploiting the fact that the two species are highly related but O. meridionalis has superior heat tolerance, experiments were undertaken to identify the impact of temperature on key events in photosynthesis. At an ambient CO(2) partial pressure of 38 Pa and irradiance of 1500 µmol quanta m(-2) s(-1), the temperature optimum of photosynthesis was 33.7 ± 0.8°C for O. meridionalis, significantly higher than the 30.6 ± 0.7°C temperature optimum of O. sativa. To understand the basis for this difference, we measured gas exchange and rubisco activation state between 20 and 42°C and modeled the response to determine the rate-limiting steps of photosynthesis. The temperature response of light respiration (R(light)) and the CO(2) compensation point in the absence of respiration (Γ(*)) were determined and found to be similar for the two species. C3 photosynthesis modeling showed that despite the difference in susceptibility to high temperature, both species had a similar temperature-dependent limitation to photosynthesis. Both rice species were limited by ribulose-1,5-bisphosphate (RuBP) regeneration at temperatures of 25 and 30°C but became RuBP carboxylation limited at 35 and 40°C. The activation state of rubisco in O. meridionalis was more stable at higher temperatures, explaining its greater heat tolerance compared with O. sativa.


Asunto(s)
Adaptación Fisiológica/genética , Calor , Oryza/enzimología , Fotosíntesis/fisiología , Ribulosa-Bifosfato Carboxilasa/metabolismo , Activación Enzimática , Genes de Plantas , Variación Genética , Genotipo , Oryza/clasificación , Oryza/genética , Hojas de la Planta/fisiología , Especificidad de la Especie , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA