Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(14): e2116860119, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35344421

RESUMEN

SignificancePlants grow from their tips. The gametophore (shoot-like organ) tip of the moss Physcomitrium patens is a single cell that performs the same functions as those of multicellular flowering plants, producing the cells that make leaves and regenerating new stem cells to maintain the shoot tip. Several pathways, including CLAVATA and cytokinin hormonal signaling, regulate stem cell abundance in flowering plants and in mosses, although the mechanisms whereby these pathways regulate stem cell abundance and their conservation between these plant lineages is poorly understood. Using moss, we investigated how PpCLAVATA and cytokinin signaling interact. Overall, we found evidence that PpCLAVATA and cytokinin signaling interact similarly in moss and flowering plants, despite their distinct anatomies, life cycles, and evolutionary distance.


Asunto(s)
Bryopsida , Meristema , Citocininas/metabolismo , Regulación de la Expresión Génica de las Plantas , Homeostasis , Meristema/metabolismo , Brotes de la Planta/metabolismo
2.
New Phytol ; 243(4): 1610-1619, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38924134

RESUMEN

The homology of the single cotyledon of grasses and the ontogeny of the scutellum and coleoptile as the initial, highly modified structures of the grass embryo are investigated using leaf developmental genetics and targeted transcript analyses in the model grass Zea mays subsp. mays. Transcripts of leaf developmental genes are identified in both the initiating scutellum and the coleoptile, while mutations disrupting mediolateral leaf development also disrupt scutellum and coleoptile morphology, suggesting that these grass-specific organs are modified leaves. Higher-order mutations in WUSCHEL-LIKE HOMEOBOX3 (WOX3) genes, involved in mediolateral patterning of plant lateral organs, inform a model for the fusion of coleoptilar margins during maize embryo development. Genetic, RNA-targeting, and morphological evidence supports models for cotyledon evolution where the scutellum and coleoptile, respectively, comprise the distal and proximal domains of the highly modified, single grass cotyledon.


Asunto(s)
Cotiledón , Regulación de la Expresión Génica de las Plantas , Mutación , Semillas , Zea mays , Zea mays/genética , Zea mays/crecimiento & desarrollo , Zea mays/anatomía & histología , Semillas/crecimiento & desarrollo , Semillas/genética , Mutación/genética , Cotiledón/genética , Cotiledón/crecimiento & desarrollo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/genética , Hojas de la Planta/anatomía & histología , Genes de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Modelos Biológicos
3.
Development ; 147(20)2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-32994171

RESUMEN

The mechanisms whereby leaf anlagen undergo proliferative growth and expansion to form wide, flat leaves are unclear. The maize gene NARROWSHEATH1 (NS1) is a WUSCHEL-related homeobox3 (WOX3) homolog expressed at the margins of leaf primordia, and is required for mediolateral outgrowth. To investigate the mechanisms of NS1 function, we used chromatin immunoprecipitation and laser-microdissection RNA-seq of leaf primordial margins to identify gene targets bound and modulated by NS1. Microscopic analyses of cell division and gene expression in expanding leaves, and reverse genetic analyses of homologous NS1 target genes in Arabidopsis, reveal that NS1 controls mediolateral outgrowth by repression of a growth inhibitor and promotion of cell division at primordial leaf margins. Intriguingly, homologous WOX gene products are expressed in stem cell-organizing centers and traffic to adjoining cells to activate stem-cell identity non-autonomously. In contrast, WOX3/NS1 does not traffic, and stimulates cell divisions in the same cells in which it is transcribed.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/ultraestructura , División Celular , Regulación de la Expresión Génica de las Plantas , Genes Homeobox , Genes de Plantas , Proteínas de Homeodominio/genética , Ácidos Indolacéticos/metabolismo , Mutación/genética , Fenotipo , Hojas de la Planta/citología , Hojas de la Planta/ultraestructura , Proteínas de Plantas/genética , Fase S , Plantones/genética , Zea mays/genética
4.
Plant Physiol ; 189(4): 2144-2158, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35512195

RESUMEN

The cuticle, a hydrophobic layer of cutin and waxes synthesized by plant epidermal cells, is the major barrier to water loss when stomata are closed. Dissecting the genetic architecture of natural variation for maize (Zea mays L.) leaf cuticular conductance (gc) is important for identifying genes relevant to improving crop productivity in drought-prone environments. To this end, we performed an integrated genome- and transcriptome-wide association studies (GWAS and TWAS) to identify candidate genes putatively regulating variation in leaf gc. Of the 22 plausible candidate genes identified, 4 were predicted to be involved in cuticle precursor biosynthesis and export, 2 in cell wall modification, 9 in intracellular membrane trafficking, and 7 in the regulation of cuticle development. A gene encoding an INCREASED SALT TOLERANCE1-LIKE1 (ISTL1) protein putatively involved in intracellular protein and membrane trafficking was identified in GWAS and TWAS as the strongest candidate causal gene. A set of maize nested near-isogenic lines that harbor the ISTL1 genomic region from eight donor parents were evaluated for gc, confirming the association between gc and ISTL1 in a haplotype-based association analysis. The findings of this study provide insights into the role of regulatory variation in the development of the maize leaf cuticle and will ultimately assist breeders to develop drought-tolerant maize for target environments.


Asunto(s)
Estudio de Asociación del Genoma Completo , Zea mays , Hojas de la Planta/metabolismo , Transcriptoma , Ceras/metabolismo , Zea mays/metabolismo
5.
J Exp Bot ; 74(21): 6541-6550, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37498739

RESUMEN

Crosstalk between auxin and cytokinin contributes to widespread developmental processes, including root and shoot meristem maintenance, phyllotaxy, and vascular patterning. However, our understanding of crosstalk between these hormones is limited primarily to angiosperms. The moss Physcomitrium patens (formerly Physcomitrella patens) is a powerful system for studying plant hormone function. Auxin and cytokinin play similar roles in regulating moss gametophore (shoot) architecture, to those in flowering plant shoots. However, auxin-cytokinin crosstalk is poorly understood in moss. Here we find that the ratio of auxin to cytokinin is an important determinant of development in P. patens, especially during leaf development and branch stem cell initiation. Addition of high levels of auxin to P. patens gametophores blocks leaf outgrowth. However, simultaneous addition of high levels of both auxin and cytokinin partially restores leaf outgrowth, suggesting that the ratio of these hormones is the predominant factor. Likewise, during branch initiation and outgrowth, chemical inhibition of auxin synthesis phenocopies cytokinin application. Finally, cytokinin-insensitive mutants resemble plants with altered auxin signaling and are hypersensitive to auxin. In summary, our results suggest that the ratio between auxin and cytokinin signaling is the basis for developmental decisions in the moss gametophore.


Asunto(s)
Briófitas , Bryopsida , Citocininas/farmacología , Ácidos Indolacéticos/farmacología , Bryopsida/genética , Meristema , Hojas de la Planta , Hormonas
6.
Proc Natl Acad Sci U S A ; 117(52): 33689-33699, 2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33318187

RESUMEN

Plants maintain populations of pluripotent stem cells in shoot apical meristems (SAMs), which continuously produce new aboveground organs. We used single-cell RNA sequencing (scRNA-seq) to achieve an unbiased characterization of the transcriptional landscape of the maize shoot stem-cell niche and its differentiating cellular descendants. Stem cells housed in the SAM tip are engaged in genome integrity maintenance and exhibit a low rate of cell division, consistent with their contributions to germline and somatic cell fates. Surprisingly, we find no evidence for a canonical stem-cell organizing center subtending these cells. In addition, trajectory inference was used to trace the gene expression changes that accompany cell differentiation, revealing that ectopic expression of KNOTTED1 (KN1) accelerates cell differentiation and promotes development of the sheathing maize leaf base. These single-cell transcriptomic analyses of the shoot apex yield insight into the processes of stem-cell function and cell-fate acquisition in the maize seedling and provide a valuable scaffold on which to better dissect the genetic control of plant shoot morphogenesis at the cellular level.


Asunto(s)
Diferenciación Celular , Análisis de la Célula Individual , Células Madre/citología , Zea mays/citología , División Celular , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Meristema , Hojas de la Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcripción Genética , Transcriptoma/genética , Zea mays/genética
7.
Proc Natl Acad Sci U S A ; 117(22): 12464-12471, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32424100

RESUMEN

Plant cuticles are composed of wax and cutin and evolved in the land plants as a hydrophobic boundary that reduces water loss from the plant epidermis. The expanding maize adult leaf displays a dynamic, proximodistal gradient of cuticle development, from the leaf base to the tip. Laser microdissection RNA Sequencing (LM-RNAseq) was performed along this proximodistal gradient, and complementary network analyses identified potential regulators of cuticle biosynthesis and deposition. A weighted gene coexpression network (WGCN) analysis suggested a previously undescribed function for PHYTOCHROME-mediated light signaling during the regulation of cuticular wax deposition. Genetic analyses reveal that phyB1 phyB2 double mutants of maize exhibit abnormal cuticle composition, supporting the predictions of our coexpression analysis. Reverse genetic analyses also show that phy mutants of the moss Physcomitrella patens exhibit abnormal cuticle composition, suggesting an ancestral role for PHYTOCHROME-mediated, light-stimulated regulation of cuticle development during plant evolution.


Asunto(s)
Hojas de la Planta/crecimiento & desarrollo , Transcriptoma , Zea mays/genética , Bryopsida/genética , Bryopsida/metabolismo , Bryopsida/efectos de la radiación , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Luz , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma/efectos de la radiación , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo , Zea mays/efectos de la radiación
8.
Genome Res ; 29(12): 1962-1973, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31744902

RESUMEN

The shoot apical meristem (SAM) orchestrates the balance between stem cell proliferation and organ initiation essential for postembryonic shoot growth. Meristems show a striking diversity in shape and size. How this morphological diversity relates to variation in plant architecture and the molecular circuitries driving it are unclear. By generating a high-resolution gene expression atlas of the vegetative maize shoot apex, we show here that distinct sets of genes govern the regulation and identity of stem cells in maize versus Arabidopsis. Cell identities in the maize SAM reflect the combinatorial activity of transcription factors (TFs) that drive the preferential, differential expression of individual members within gene families functioning in a plethora of cellular processes. Subfunctionalization thus emerges as a fundamental feature underlying cell identity. Moreover, we show that adult plant characters are, to a significant degree, regulated by gene circuitries acting in the SAM, with natural variation modulating agronomically important architectural traits enriched specifically near dynamically expressed SAM genes and the TFs that regulate them. Besides unique mechanisms of maize stem cell regulation, our atlas thus identifies key new targets for crop improvement.


Asunto(s)
Arabidopsis/genética , Bases de Datos de Ácidos Nucleicos , Regulación de la Expresión Génica de las Plantas/fisiología , Genes de Plantas , Meristema/genética , Arabidopsis/metabolismo , Meristema/metabolismo
9.
New Phytol ; 230(1): 218-227, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33280125

RESUMEN

The formation of developmental boundaries is a common feature of multicellular plants and animals, and impacts the initiation, structure and function of all organs. Maize leaves comprise a proximal sheath that encloses the stem, and a distal photosynthetic blade that projects away from the plant axis. An epidermally derived ligule and a joint-like auricle develop at the blade/sheath boundary of maize leaves. Mutations disturbing the ligule/auricle region disrupt leaf patterning and impact plant architecture, yet it is unclear how this developmental boundary is established. Targeted microdissection followed by transcriptomic analyses of young leaf primordia were utilized to construct a co-expression network associated with development of the blade/sheath boundary. Evidence is presented for proximodistal gradients of gene expression that establish a prepatterned transcriptomic boundary in young leaf primordia, before the morphological initiation of the blade/sheath boundary in older leaves. This work presents a conceptual model for spatiotemporal patterning of proximodistal leaf domains, and provides a rich resource of candidate gene interactions for future investigations of the mechanisms of blade/sheath boundary formation in maize.


Asunto(s)
Transcriptoma , Zea mays , Biología Computacional , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma/genética , Zea mays/genética , Zea mays/metabolismo
11.
Plant Biotechnol J ; 18(12): 2456-2465, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32452105

RESUMEN

Effective evaluation of millions of crop genetic stocks is an essential component of exploiting genetic diversity to achieve global food security. By leveraging genomics and data analytics, genomic prediction is a promising strategy to efficiently explore the potential of these gene banks by starting with phenotyping a small designed subset. Reliable genomic predictions have enhanced selection of many macroscopic phenotypes in plants and animals. However, the use of genomicprediction strategies for analysis of microscopic phenotypes is limited. Here, we exploited the power of genomic prediction for eight maize traits related to the shoot apical meristem (SAM), the microscopic stem cell niche that generates all the above-ground organs of the plant. With 435 713 genomewide single-nucleotide polymorphisms (SNPs), we predicted SAM morphology traits for 2687 diverse maize inbreds based on a model trained from 369 inbreds. An empirical validation experiment with 488 inbreds obtained a prediction accuracy of 0.37-0.57 across eight traits. In addition, we show that a significantly higher prediction accuracy was achieved by leveraging the U value (upper bound for reliability) that quantifies the genomic relationships of the validation set with the training set. Our findings suggest that double selection considering both prediction and reliability can be implemented in choosing selection candidates for phenotyping when exploring new diversity is desired. In this case, individuals with less extreme predicted values and moderate reliability values can be considered. Our study expands the turbocharging gene banks via genomic prediction from the macrophenotypes into the microphenotypic space.


Asunto(s)
Genómica , Zea mays , Animales , Genotipo , Modelos Genéticos , Fenotipo , Polimorfismo de Nucleótido Simple , Reproducibilidad de los Resultados , Selección Genética
12.
Ann Bot ; 125(1): 79-91, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31504131

RESUMEN

BACKGROUND AND AIMS: Prior work has examined cuticle function, composition and ultrastructure in many plant species, but much remains to be learned about how these features are related. This study aims to elucidate relationships between these features via analysis of cuticle development in adult maize (Zea mays L.) leaves, while also providing the most comprehensive investigation to date of the composition and ultrastructure of adult leaf cuticles in this important crop plant. METHODS: We examined water permeability, wax and cutin composition via gas chromatography, and ultrastructure via transmission electron microscopy, along the developmental gradient of partially expanded adult maize leaves, and analysed the relationships between these features. KEY RESULTS: The water barrier property of the adult maize leaf cuticle is acquired at the cessation of cell expansion. Wax types and chain lengths accumulate asynchronously over the course of development, while overall wax load does not vary. Cutin begins to accumulate prior to establishment of the water barrier and continues thereafter. Ultrastructurally, pavement cell cuticles consist of an epicuticular layer, and a thin cuticle proper that acquires an inner, osmiophilic layer during development. CONCLUSIONS: Cuticular waxes of the adult maize leaf are dominated by alkanes and alkyl esters. Unexpectedly, these are localized mainly in the epicuticular layer. Establishment of the water barrier during development coincides with a switch from alkanes to esters as the major wax type, and the emergence of an osmiophilic (likely cutin-rich) layer of the cuticle proper. Thus, alkyl esters and the deposition of the cutin polyester are implicated as key components of the water barrier property of adult maize leaf cuticles.


Asunto(s)
Agua , Zea mays , Epidermis de la Planta , Hojas de la Planta , Ceras
13.
J Plant Res ; 133(3): 331-342, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32333315

RESUMEN

Plants maintain populations of stem cells to generate new organs throughout the course of their lives. The pathways that regulate plant stem cell maintenance have garnered great interest over the past decades, as variation in these pathways contributes plant morphological diversity and can be harnessed for crop improvement. In order to facilitate cross-species comparisons of gene function and better understand how these stem cell regulatory pathways evolved, we undertook a functionally informed phylogenetic analysis of leucine-rich receptor-like kinases (LRR-RLK) and related proteins across diverse land plant model systems. Based on our phylogenetic analysis and on functional data, we propose a naming scheme for these stem cell signaling genes. We discovered evidence for frequent loss of protein domains in angiosperms but not in bryophytes. In addition, several clades of stem cell signaling genes are closely related to genes that function in immunity, although these distinct developmental and immune functions likely separated or after the divergence of lycophytes and angiosperms. Overall, the phylogenetic framework and evolutionary hypotheses we provide here will empower future research on cross-species comparisons of stem cell signaling pathways.


Asunto(s)
Evolución Molecular , Genes de Plantas , Magnoliopsida/citología , Células Madre/citología , Magnoliopsida/genética , Filogenia , Transducción de Señal
14.
Plant J ; 96(5): 982-996, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30194881

RESUMEN

The phloem of the Cucurbitaceae has long been a subject of interest due to its complex nature and the economic importance of the family. As in a limited number of other families, cucurbit phloem is bicollateral, i.e. with sieve tubes on both sides of the xylem. To date little is known about the specialized functions of the internal phloem (IP) and external phloem (EP). Here, a combination of microscopy, fluorescent dye transport analysis, micro-computed tomography, laser capture microdissection and RNA-sequencing (RNA-Seq) were used to study the functions of IP and EP in the vascular bundles (VBs) of cucumber fruit. There is one type of VB in the peduncle, but four in the fruit: peripheral (PeVB), main (MVB), carpel (CVB) and placental (PlVB). The VBs are bicollateral, except for the CVB and PlVB. Phloem mobile tracers and 14 C applied to leaves are transported primarily in the EP, and to a lesser extent in the IP. RNA-Seq data indicate preferential gene transcription in the IP related to differentiation/development, hormone transport, RNA or protein modification/processing/transport, and nitrogen compound metabolism and transport. The EP preferentially expresses genes for stimulus/stress, defense, ion transport and secondary metabolite biosynthesis. The MVB phloem is preferentially involved in photoassimilate transport, unloading and long-distance signaling, while the PeVB plays a more substantial role in morphogenesis and/or development and defense response. CVB and PlVB transcripts are biased toward development of reproductive organs. These findings provide an integrated view of the differentiated structure and function of the vascular tissue in cucumber fruit.


Asunto(s)
Cucumis sativus/metabolismo , Frutas/metabolismo , Floema/metabolismo , Cucumis sativus/crecimiento & desarrollo , Cucumis sativus/ultraestructura , Frutas/crecimiento & desarrollo , Frutas/ultraestructura , Perfilación de la Expresión Génica , Microscopía Confocal , Floema/crecimiento & desarrollo , Floema/ultraestructura , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/metabolismo , Tallos de la Planta/ultraestructura , Microtomografía por Rayos X , Xilema/crecimiento & desarrollo , Xilema/metabolismo , Xilema/ultraestructura
15.
Mol Biol Evol ; 35(11): 2762-2772, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30184112

RESUMEN

Meiotic recombination is an evolutionary force that generates new genetic diversity upon which selection can act. Whereas multiple studies have assessed genome-wide patterns of recombination and specific cases of intragenic recombination, few studies have assessed intragenic recombination genome-wide in higher eukaryotes. We identified recombination events within or near genes in a population of maize recombinant inbred lines (RILs) using RNA-sequencing data. Our results are consistent with case studies that have shown that intragenic crossovers cluster at the 5' ends of some genes. Further, we identified cases of intragenic crossovers that generate transgressive transcript accumulation patterns, that is, recombinant alleles displayed higher or lower levels of expression than did nonrecombinant alleles in any of ∼100 RILs, implicating intragenic recombination in the generation of new variants upon which selection can act. Thousands of apparent gene conversion events were identified, allowing us to estimate the genome-wide rate of gene conversion at SNP sites (4.9 × 10-5). The density of syntenic genes (i.e., those conserved at the same genomic locations since the divergence of maize and sorghum) exhibits a substantial correlation with crossover frequency, whereas the density of nonsyntenic genes (i.e., those which have transposed or been lost subsequent to the divergence of maize and sorghum) shows little correlation, suggesting that crossovers occur at higher rates in syntenic genes than in nonsyntenic genes. Increased rates of crossovers in syntenic genes could be either a consequence of the evolutionary conservation of synteny or a biological process that helps to maintain synteny.


Asunto(s)
Alelos , Intercambio Genético , Meiosis , Zea mays/genética , Expresión Génica , Sintenía , Zea mays/metabolismo
16.
New Phytol ; 221(2): 706-724, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30106472

RESUMEN

Contents Summary 706 I. Introduction 707 II. Leaf zones in monocot and eudicot leaves 707 III. Monocot and eudicot leaf initiation: differences in degree and timing, but not kind 710 IV. Reticulate and parallel venation: extending the model? 711 V. Flat laminar growth: patterning and coordination of adaxial-abaxial and mediolateral axes 713 VI. Stipules and ligules: ontogeny of primordial elaborations 715 VII. Leaf architecture 716 VIII. Stomatal development: shared and diverged mechanisms for making epidermal pores 717 IX. Conclusion 719 Acknowledgements 720 References 720 SUMMARY: Comparisons of concepts in monocot and eudicot leaf development are presented, with attention to the morphologies and mechanisms separating these angiosperm lineages. Monocot and eudicot leaves are distinguished by the differential elaborations of upper and lower leaf zones, the formation of sheathing/nonsheathing leaf bases and vasculature patterning. We propose that monocot and eudicot leaves undergo expansion of mediolateral domains at different times in ontogeny, directly impacting features such as venation and leaf bases. Furthermore, lineage-specific mechanisms in compound leaf development are discussed. Although models for the homologies of enigmatic tissues, such as ligules and stipules, are proposed, tests of these hypotheses are rare. Likewise, comparisons of stomatal development are limited to Arabidopsis and a few grasses. Future studies may investigate correlations in the ontogenies of parallel venation and linear stomatal files in monocots, and the reticulate patterning of veins and dispersed stoma in eudicots. Although many fundamental mechanisms of leaf development are shared in eudicots and monocots, variations in the timing, degree and duration of these ontogenetic events may contribute to key differences in morphology. We anticipate that the incorporation of an ever-expanding number of sequenced genomes will enrich our understanding of the developmental mechanisms generating eudicot and monocot leaves.


Asunto(s)
Hojas de la Planta/crecimiento & desarrollo , Tipificación del Cuerpo , Modelos Biológicos , Hojas de la Planta/anatomía & histología , Proteínas de Plantas/metabolismo , Estomas de Plantas/crecimiento & desarrollo , Haz Vascular de Plantas/crecimiento & desarrollo
17.
Plant Cell ; 26(12): 4718-32, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25516601

RESUMEN

Development of multicellular organisms proceeds via the correct interpretation of positional information to establish boundaries that separate developmental fields with distinct identities. The maize (Zea mays) leaf is an ideal system to study plant morphogenesis as it is subdivided into a proximal sheath and a distal blade, each with distinct developmental patterning. Specialized ligule and auricle structures form at the blade-sheath boundary. The auricles act as a hinge, allowing the leaf blade to project at an angle from the stem, while the ligule comprises an epidermally derived fringe. Recessive liguleless1 mutants lack ligules and auricles and have upright leaves. We used laser microdissection and RNA sequencing to identify genes that are differentially expressed in discrete cell/tissue-specific domains along the proximal-distal axis of wild-type leaf primordia undergoing ligule initiation and compared transcript accumulation in wild-type and liguleless1-R mutant leaf primordia. We identified transcripts that are specifically upregulated at the blade-sheath boundary. A surprising number of these "ligule genes" have also been shown to function during leaf initiation or lateral branching and intersect multiple hormonal signaling pathways. We propose that genetic modules utilized in leaf and/or branch initiation are redeployed to regulate ligule outgrowth from leaf primordia.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Zea mays/genética , Biología Computacional , Perfilación de la Expresión Génica , ARN Mensajero/metabolismo , Transducción de Señal , Zea mays/anatomía & histología , Zea mays/crecimiento & desarrollo
18.
Nucleic Acids Res ; 43(7): 3614-25, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25765652

RESUMEN

DNA base composition is a fundamental genome feature. However, the evolutionary pattern of base composition and its potential causes have not been well understood. Here, we report findings from comparative analysis of base composition at the whole-genome level across 2210 species, the polymorphic-site level across eight population comparison sets, and the mutation-site level in 12 mutation-tracking experiments. We first demonstrate that base composition follows the individual-strand base equality rule at the genome, chromosome and polymorphic-site levels. More intriguingly, clear separation of base-composition values calculated across polymorphic sites was consistently observed between basal and derived groups, suggesting common underlying mechanisms. Individuals in the derived groups show an A&T-increase/G&C-decrease pattern compared with the basal groups. Spontaneous and induced mutation experiments indicated these patterns of base composition change can emerge across mutation sites. With base-composition across polymorphic sites as a genome phenotype, genome scans with human 1000 Genomes and HapMap3 data identified a set of significant genomic regions enriched with Gene Ontology terms for DNA repair. For three DNA repair genes (BRIP1, PMS2P3 and TTDN), ENCODE data provided evidence for interaction between genomic regions containing these genes and regions containing the significant SNPs. Our findings provide insights into the mechanisms of genome evolution.


Asunto(s)
Composición de Base , Reparación del ADN , ADN/genética , Evolución Molecular , Polimorfismo de Nucleótido Simple , Genoma Humano , Estudio de Asociación del Genoma Completo , Humanos
19.
Plant J ; 83(4): 743-51, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26123849

RESUMEN

Haploid moss gametophytes harbor distinct stem cell types, including tip cells that divide in single planes to generate filamentous protonemata, and bud cells that divide in three planes to yield axial gametophore shoots. This transition from filamentous to triplanar growth occurs progressively during the moss life cycle, and is thought to mirror evolution of the first terrestrial plants from Charophycean green algal ancestors. The innovation of morphologically complex plant body plans facilitated colonization of the vertical landscape, and enabled development of complex vegetative and reproductive plant morphologies. Despite its profound evolutionary significance, the molecular programs involved in this transition from filamentous to triplanar meristematic plant growth are poorly understood. In this study, we used single-cell type transcriptomics to identify more than 4000 differentially expressed genes that distinguish uniplanar protonematal tip cells from multiplanar gametophore bud cells in the moss Physcomitrella patens. While the transcriptomes of both tip and bud cells show molecular signatures of proliferative cells, the bud cell transcriptome exhibits a wider variety of genes with significantly increased transcript abundances. Our data suggest that combined expression of genes involved in shoot patterning and asymmetric cell division accompanies the transition from uniplanar to triplanar meristematic growth in moss.


Asunto(s)
Bryopsida/citología , Bryopsida/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas
20.
Mol Biol Evol ; 32(2): 355-67, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25371433

RESUMEN

Alternation of generations, in which the haploid and diploid stages of the life cycle are each represented by multicellular forms that differ in their morphology, is a defining feature of the land plants (embryophytes). Anciently derived lineages of embryophytes grow predominately in the haploid gametophytic generation from apical cells that give rise to the photosynthetic body of the plant. More recently evolved plant lineages have multicellular shoot apical meristems (SAMs), and photosynthetic shoot development is restricted to the sporophyte generation. The molecular genetic basis for this evolutionary shift from gametophyte-dominant to sporophyte-dominant life cycles remains a major question in the study of land plant evolution. We used laser microdissection and next generation RNA sequencing to address whether angiosperm meristem patterning genes expressed in the sporophytic SAM of Zea mays are expressed in the gametophytic apical cells, or in the determinate sporophytes, of the model bryophytes Marchantia polymorpha and Physcomitrella patens. A wealth of upregulated genes involved in stem cell maintenance and organogenesis are identified in the maize SAM and in both the gametophytic apical cell and sporophyte of moss, but not in Marchantia. Significantly, meiosis-specific genetic programs are expressed in bryophyte sporophytes, long before the onset of sporogenesis. Our data suggest that this upregulated accumulation of meiotic gene transcripts suppresses indeterminate cell fate in the Physcomitrella sporophyte, and overrides the observed accumulation of meristem patterning genes. A model for the evolution of indeterminate growth in the sporophytic generation through the concerted selection of ancestral meristem gene programs from gametophyte-dominant lineages is proposed.


Asunto(s)
Células Germinativas de las Plantas/metabolismo , Meristema/metabolismo , Evolución Biológica , Bryopsida/clasificación , Bryopsida/metabolismo , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Células Germinativas de las Plantas/clasificación , Meristema/genética , Proteínas de Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA