Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Technol ; 56(23): 16811-16821, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36367435

RESUMEN

Nanofiltration (NF) membranes can retain micropollutants (MPs) to a large extent, even though adsorption into the membrane and gradual permeation result in breakthrough and incomplete removal. The permeation of MPs is investigated by examining the energy barriers (determined using the Arrhenius concept) for adsorption, intrapore diffusion, and permeation encountered by four different steroid hormones in tight and loose NF membranes. Results show that the energy barriers for steroid hormone transport in tight membrane are entropically dominated and underestimated because of the high steric exclusion at the pore entrance. In contrast, the loose NF membrane enables steroid hormones partitioning at the pore entrance, with a permeation energy barrier (from feed toward the permeate side) ranging between 96 and 116 kJ/mol. The contribution of adsorption and intrapore diffusion to the energy barrier for steroid hormone permeation reveals a significant role of intrapore diffusive transport on the obtained permeation energy barrier. Overall, the breakthrough phenomenon observed during the NF of MPs is facilitated by the low energy barrier for adsorption. Experimental evidence of such principles is relevant for understanding mechanisms and ultimately improving the selectivity of NF.


Asunto(s)
Filtración , Purificación del Agua , Filtración/métodos , Membranas Artificiales , Adsorción , Esteroides , Hormonas , Purificación del Agua/métodos
2.
Water Res ; 250: 121021, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38218047

RESUMEN

Glyphosate (GLY) is the most commonly used herbicide worldwide, and aminomethylphosphonic acid (AMPA) is one of its main metabolites. GLY and AMPA are toxic to humans, and their complex physicochemical properties present challenges in their removal from water. Several technologies have been applied to remove GLY and AMPA such as adsorption, filtration, and degradation with varied efficiencies. In previous works, an ultrafiltration membrane with permeate-side polymer-based spherical activated carbon (UF-PBSAC) showed the feasibility of removing uncharged micropollutants via adsorption in a flow-through configuration. The same UF-PBSAC was investigated for GLY and AMPA adsorption to assess the removal of charged and lower molecular weight micropollutants. The results indicated that both surface area and hydraulic residence time were limiting factors in GLY/AMPA adsorption by UF-PBSAC. The higher external surface of PBSAC with strong affinity for GLY and AMPA showed higher removal in a dynamic process where the hydraulic residence time was short (tens of seconds). Extending hydraulic residence times (hundreds of seconds) resulted in higher GLY/AMPA removal by allowing GLY/AMPA to diffuse into the PBSAC pores and reach more surfaces. Enhancement was achieved by minimising both limiting factors (external surface and hydraulic residence time) with a low flux of 25 L/m2.h, increased PBSAC layer of 6 mm, and small PBSAC particle size of 78 µm. With this configuration, UF-PBSAC could remove 98 % of GLY and 95 % of AMPA from an initial concentration of 1000 ng/L at pH 8.2 ± 0.2 and meet European Union (EU) regulation for herbicides (100 ng/L for individuals and 500 ng/L for total herbicides). The results implied that UF-PBSAC was able to remove charged micropollutants to the required levels and had potential for application in wastewater treatment and water reuse.


Asunto(s)
Herbicidas , Organofosfonatos , Purificación del Agua , Humanos , Glifosato , Ultrafiltración/métodos , Carbón Orgánico/química , Polímeros , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico , Agua , Purificación del Agua/métodos
3.
Chemosphere ; 357: 141833, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38579944

RESUMEN

Experimental water research lacks clear methodology to estimate experimental error. Especially when natural waters are involved, the characterization tools bear method-specific artifacts while the varying environmental conditions prevent regular repeats. This tutorial review identifies common mistakes, and proposes a practical procedure to determine experimental errors at the example of membrane filtration. Statistical analysis is often applied to an insufficient number of repeated measurements, while not all error sources and contributions are considered. This results in an underestimation of the experimental error. Variations in relevant experimental parameters need to be investigated systematically, and the related errors are quantified as a half of the variation between the max and min values when standard deviation is not applicable. Error of calculated parameters (e.g. flux, pollutant removal and mass loss) is estimated by applying error propagation, where weighing contributions of the experimental parameters are considered. Appropriate judgment and five-time repetition of a selected experiment under identical conditions are proposed to validate the propagated experimental error. For validation, the five repeated data points should lie within the estimated error range of the error bar. The proposed error evaluation procedure is adaptable in experimental water research and intended for researchers to identify the contributing factors of an experimental error and carry out appropriate error quantification and validation. The most important aim is to raise awareness of the necessity to question error methodology and reproducibility of experimental data, to produce and publish high quality research.


Asunto(s)
Filtración , Membranas Artificiales , Filtración/métodos , Purificación del Agua/métodos , Agua/química , Reproducibilidad de los Resultados , Proyectos de Investigación , Error Científico Experimental/estadística & datos numéricos
4.
J Hazard Mater ; 476: 134765, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38905981

RESUMEN

Photocatalytic membrane reactors (PMRs) are a promising technology for micropollutant removal. Sunlight utilization and catalyst surface sites limit photodegradation. A poly(vinylidene fluoride) (PVDF) nanofiber composite membrane (NCM) with immobilized visible-light-responsive g-C3N4/Bi2MoO6 (BMCN) were developed. Photodegradation of steroid hormones with the PVDF-BMCN NCM was investigated with varying catalyst properties, operating conditions, and relevant solution chemistry under solar irradiation. Increasing CN ratio (0-65 %) enhanced estradiol (E2) degradation from 20 ± 10 to 75 ± 7 % due to improved sunlight utilization and photon lifetime. PVDF nanofibers reduced self-aggregation of catalysts. Hydraulic residence time and light intensity enhanced the photodegradation. With the increasing pH value, the E2 removal decreased from 84 ± 4 to 67 ± 7 % owing to electrical repulsion and thus reduced adsorption between catalysts and E2. A removal of 96 % can be attained at environmentally relevant feed concentration (100 ng.L-1) with a flux of 60 L.m-2.h-1, irradiance of 100 mW.cm-2, and 1 mg.cm-2 BMCN65 loading. This confirmed that heterojunction photocatalysts can enhance micropollutants degradation in PMRs.

5.
Water Res ; 253: 121241, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38377922

RESUMEN

Strontium (Sr) removal from water is required because excessive naturally occurring Sr exposure is hazardous to human health. Climate and seasonal changes cause water quality variations, in particular quality and quantity of organic matter (OM) and pH, and such variations affect Sr removal by nanofiltration (NF). The mechanisms for such variations are not clear and thus OM complexation and speciation require attention. Sr removal by NF was investigated with emphasis on the role of OM (type and concentration) and pH (2-12) on possible removal mechanisms, specifically size and/or charge exclusion as well as solute-solute interactions. The filtration results show that the addition of various OM (10 types) and an increase of OM concentration (2-100 mgC.L-1) increased Sr removal by 10-15%. The Sr-OM interaction was enhanced with increasing OM concentration, implying enhanced size exclusion via Sr-OM interaction as the main mechanism. Such interactions were quantified by asymmetric flow field-flow fractionation (FFFF) coupled with an inductively coupled plasma mass spectrometer (ICP-MS). Both extremely low and high pH increased Sr removal due to the enhanced charge exclusion and Sr-OM interactions. This work elucidated and verified the mechanism of OM and pH on Sr removal by NF membranes.


Asunto(s)
Estroncio , Purificación del Agua , Humanos , Purificación del Agua/métodos , Filtración/métodos , Soluciones , Calidad del Agua
6.
Water Res ; 249: 120825, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38118222

RESUMEN

Adsorption processes with carbon-based adsorbents have received substantial attention as a solution to remove uranium from drinking water. This study investigated uranium adsorption by a polymer-based spherical activated carbon (PBSAC) characterised by a uniformly smooth exterior and an extended surface of internal cavities accessible via mesopores. The static adsorption of uranium was investigated applying varying PBSAC properties and relevant solution chemistry. Spatial time-of-flight secondary ion mass spectrometry (ToF-SIMS) was employed to visualise the distribution of the different uranium species in the PBSAC. The isotherms and thermodynamics calculations revealed monolayer adsorption capacities of 28-667 mg/g and physical adsorption energies of 13-21 kJ/mol. Increasing the surface oxygen content of the PBSAC to 10 % enhanced the adsorption and reduced the equilibrium time to 2 h, while the WHO drinking water guideline of 30 µgU/L could be achieved for an initial concentration of 250 µgU/L. Uranium adsorption with PBSAC was favourable at the pH 6-8. At this pH range, uranyl carbonate complexes (UO2CO3(aq), UO2(CO3)22-, (UO2)2CO3(OH)3-) predominated in the solution, and the ToF-SIMS analysis revealed that the adsorption of these complexes occurred on the surface and inside the PBSAC due to intra-particle diffusion. For the uranyl cations (UO22+, UO2OH+) at pH 2-4, only shallow adsorption in the outermost PBSAC layers was observed. The work demonstrated the effective removal of uranium from contaminated natural water (67 µgU/L) and meeting both German (10 µgU/L) and WHO guideline concentrations. These findings also open opportunities to consider PBSAC in hybrid treatment technologies for uranium removal, for instance, from high-level radioactive waste.


Asunto(s)
Agua Potable , Uranio , Agua Potable/análisis , Uranio/análisis , Carbón Orgánico , Adsorción , Polímeros , Concentración de Iones de Hidrógeno
7.
Nat Commun ; 15(1): 1114, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321016

RESUMEN

Vertically-aligned carbon nanotube (VaCNT) membranes allow water to conduct rapidly at low pressures and open up the possibility for water purification and desalination, although the ultralow viscous stress in hydrophobic and low-tortuosity nanopores prevents surface interactions with contaminants. In this experimental investigation, steroid hormone micropollutant adsorption by VaCNT membranes is quantified and explained via the interplay of the hydrodynamic drag and friction forces acting on the hormone, and the adhesive and repulsive forces between the hormone and the inner carbon nanotube wall. It is concluded that a drag force above 2.2 × 10-3 pN overcomes the friction force resulting in insignificant adsorption, whereas lowering the drag force from 2.2 × 10-3 to 4.3 × 10-4 pN increases the adsorbed mass of hormones from zero to 0.4 ng cm-2. At a low drag force of 1.6 × 10-3 pN, the adsorbed mass of four hormones is correlated with the hormone-wall adhesive (van der Waals) force. These findings explain micropollutant adsorption in nanopores via the forces acting on the micropollutant along and perpendicular to the flow, which can be exploited for selectivity.

8.
Environ Sci Technol ; 47(4): 1968-76, 2013 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-23298263

RESUMEN

Environmentally relevant contaminants fluoride, chloride, nitrate, and nitrite face Arrhenius energy barriers during transport through nanofiltration (NF) membranes. The energy barriers were quantified using crossflow filtration experiments and were in the range of 7-17 kcal·mol(-1), according to ion type and membrane type (Filmtec NF90 and NF270). Fluoride faced a comparatively high energy barrier for both membranes. This can be explained by the strong hydration energy of fluoride rather than other ion properties such as bare ion radius, fully hydrated radius, Stokes radius, diffusion coefficient, or ion charge. The energy barrier for fluoride decreased with pressure, indicating an impact of directional force on energy barriers. The influence of temperature-induced pore radius variability and viscosity on energy barriers was considered. The novel link between energy barriers and ion properties emphasizes the importance of ion hydration and/or partial dehydration mechanisms in determining transport in NF.


Asunto(s)
Aniones/química , Filtración , Membranas Artificiales , Nanoestructuras , Presión , Temperatura , Viscosidad , Agua/química
9.
Sci Total Environ ; 855: 158891, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36411600

RESUMEN

The structure and size characterization of organic matter (OM) using flow field-flow fractionation (FFFF) is interesting due to the numerous interactions of OM in aquatic systems and water treatment processes. The estimation of hydrodynamic and electrostatic forces involved in the fractionation of OM over different molecular weight cut-off (MWCO) membranes is vital for a better understanding of the FFFF process. This work aims to understand the membrane-OM interactive forces with respect to membrane MWCO, solute molecular weight, flow rates, solution pH and ionic strength. Polystyrene sulfonate sodium salt (PSS) of molecular weights 10, 30 and 65 kDa were used as model organic solutes for fractionation over ultrafiltration (UF) membranes of MWCO 1-30 kDa. Maximum fractionation of PSS was achieved by using a tight membrane of 1 kDa MWCO at the conditions of high permeate flow rate (1.5-2.0 mL·min-1), low concentrate flow rate (0.2-0.3 mL·min-1) and low ionic strength (10 mM). The better fractionation corresponds to high permeate drag force and low concentrate drag force. A low membrane-solute DLVO interaction is favourable for the retention of a small solute. This study illustrated that FFFF characteristics can be analyzed based on membrane-solute interactive forces controlled by selected flow, size and charge parameters.


Asunto(s)
Fraccionamiento de Campo-Flujo , Fraccionamiento de Campo-Flujo/métodos , Hidrodinámica , Electricidad Estática , Soluciones , Ultrafiltración/métodos
10.
Sci Total Environ ; 878: 162794, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-36914135

RESUMEN

Drinking water in The Gambia is mostly derived from boreholes that could potentially be contaminated. The Gambia River, a major river in West Africa that covers 12 % of the country's area, could be more exploited for drinking water supply. During the dry season, the total dissolved solids (TDS), ranging from 0.02 to 33 g/L in The Gambia River, decreases with the distance to the river mouth with no major inorganic contamination. The freshwater (<0.8 g/L TDS) starts from Jasobo at approximately 120 km from the river mouth and extends by about 350 km to the eastern border of The Gambia. With a dissolved organic carbon (DOC) ranging from 2 to 15 mgC/L, the natural organic matter (NOM) of The Gambia River was characterised by 40-60 % humic substances of paedogenic origin. With such characteristics, unknown disinfection by-products could be formed if chemical disinfection, such as chlorination, was implemented during treatment. Out of 103 types of micropollutants, 21 were detected (4 pesticides, 10 pharmaceuticals, 7 per- and polyfluoroalkyl substances (PFAS)) with concentrations ranging from 0.1 to 1500 ng/L. Pesticides, bisphenol A and PFAS concentrations were below the stricter EU guidelines set for drinking water. These were mainly confined to the urban area of high population density near the river mouth, while the quality of the freshwater region of low population density was surprisingly pristine. These results indicate that The Gambia River, especially in its upper regions, would be well suited as a drinking water supply when using decentralised ultrafiltration treatment for the removal of turbidity, as well as, depending on pore size, to a certain extent microorganisms and DOC.


Asunto(s)
Agua Potable , Fluorocarburos , Plaguicidas , Contaminantes Químicos del Agua , Purificación del Agua , Ríos/química , Calidad del Agua , Gambia , Estudios Prospectivos , Contaminantes Químicos del Agua/análisis , Abastecimiento de Agua , Fluorocarburos/análisis
11.
Water Res ; 245: 120438, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37716301

RESUMEN

Water treatment in photocatalytic membrane reactors (PMR) holds great promise for removing micropollutants from aquatic environments. Organic matter (OM) that is present in any water matrix may significantly interfere with the degradation of steroid hormone (SH) micropollutants in PMRs. In this study, the interference of various OM types, humic acid (HA), Australian natural organic matter (AUS), worm farm extract (WF), tannic acid (TA), and gallic acid (GA) with the SH degradation at its environmentally relevant concentration (100 ng/L) in a flow-through PMR equipped with a polyethersulphone-titanium dioxide (PES-TiO2) membrane operated under UV light (365 nm) was investigated. Results of this study showed that OM effects are complex and depend on OM type and concentration. The removal of ß-estradiol (E2) was enhanced by HA at its levels below 5 mgC/L while the enhancement was abated at higher HA concentrations. The E2 removal was inhibited by TA, and GA, while no significant interference observed for AUS, and WF. The data demonstrated diverse roles of OM that acts in PMRs as a light screening agent, a photoreactive species scavenger, an adsorption alteration trigger, and a photosensitizer. The time-resolved fluorescence measurement showed that HA, acting as a photosensitizer, promoted the sensitization of TiO2 by absorbing light energy and transferring energy/electron to the TiO2 substrate. This pathway dominated the mechanism of the enhanced E2 degradation by HA. The favorable effect of HA was augmented as increasing the light intensity from 0.5 to 10 mW/cm2 and was weakened at higher light intensities due to the increased scavenging reactions and the limited amount of HA. This work clarifies the underlying mechanism of the OM interference on photocatalytic degradation of E2 by the PES-TiO2 PMR.


Asunto(s)
Fármacos Fotosensibilizantes , Titanio , Australia , Sustancias Húmicas/análisis , Estradiol , Catálisis
12.
Sci Total Environ ; 885: 163695, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37100133

RESUMEN

Chromium (Cr) is a toxic inorganic contaminant for drinking water, in which the concentration has to be controlled for human health and safety. Cr retention was investigated with stirred cell experiments using sulphonated polyethersulfone nanofiltration (NF) membranes of different molecular weight cut-off (MWCO). Cr(III) and Cr(VI) retention follow the order of the MWCO of the studied NF membranes; HY70-720 Da > HY50-1000 Da > HY10-3000 Da with a pH dependency, especially for Cr(III). The importance of the charge exclusion was highlighted when Cr(OH)4- (for Cr(III)) and CrO42- (for Cr(VI)) was the predominant species in the feed solution. In presence of organic matter, namely humic acid (HA), Cr(III) retention increased by 60 %, while no influence of HA was observed for Cr(VI). HA did not induce major modifications on the membrane surface charge for these membranes. Solute-solute interaction, in particular Cr(III)-HA complexation, was the responsible mechanism for the increase in Cr(III) retention. This was confirmed by asymmetric flow field-flow fractionation, coupled with inductively coupled plasma mass spectrometry (FFFF-ICP-MS) analysis. Cr(III)-HA complexation was significant at HA concentrations as low as 1 mgC/L. The chosen NF membranes were able to achieve the EU guideline (25 µg/L) for Cr in drinking water for a feed concentration of 250 µg/L.

13.
J Hazard Mater ; 447: 130832, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36696777

RESUMEN

The lack of effective technologies to remove steroid hormones (SHs) from aquatic systems is a critical issue for both environment and public health. The performance of a flow-through photocatalytic membrane reactor (PMR) with TiO2 immobilized on a photostable poly(vinylidene fluoride) membrane (PVDF-TiO2) was evaluated in the context of SHs degradation at concentrations from 0.05 to 1000 µg/L under UV exposure (365 nm). A comprehensive investigation into the membrane preparation approach, including varying the surface Ti content and distribution, and membrane pore size, was conducted to gain insights on the rate-limiting steps for the SHs degradation. Increasing surface Ti content from 4 % to 6.5 % enhanced the 17ß-estradiol (E2) degradation from 46 ± 12-81 ± 6 %. Apparent degradation kinetics were independent of both TiO2 homogeneity and membrane pore size (0.1-0.45 µm). With optimized conditions, E2 removal was higher than 96 % at environmentally relevant feed concentration (100 ng/L), a flux of 60 L/m2h, 25 mW/cm2, and 6.5 % Ti. These results indicated that the E2 degradation on the PVDF-TiO2 membrane was limited by the catalyst content and light penetration depth. Further exploration of novel TiO2 immobilization approach that can offer a larger catalyst content and light penetration is required to improve the micropollutant removal efficiency in PMR.

14.
Small ; 8(11): 1701-9, 2012 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-22434668

RESUMEN

The transport of hydrated ions through narrow pores is important for a number of processes such as the desalination and filtration of water and the conductance of ions through biological channels. Here, molecular dynamics simulations are used to systematically examine the transport of anionic drinking water contaminants (fluoride, chloride, nitrate, and nitrite) through pores ranging in effective radius from 2.8 to 6.5 Å to elucidate the role of hydration in excluding these species during nanofiltration. Bulk hydration properties (hydrated size and coordination number) are determined for comparison with the situations inside the pores. Free energy profiles for ion transport through the pores show energy barriers depend on pore size, ion type, and membrane surface charge and that the selectivity sequence can change depending on the pore size. Ion coordination numbers along the trajectory showed that partial dehydration of the transported ion is the main contribution to the energy barriers. Ion transport is greatly hindered when the effective pore radius is smaller than the hydrated radius, as the ion has to lose some associated water molecules to enter the pore. Small energy barriers are still observed when pore sizes are larger than the hydrated radius due to re-orientation of the hydration shell or the loss of more distant water. These results demonstrate the importance of ion dehydration in transport through narrow pores, which increases the current level of mechanistic understanding of membrane-based desalination and transport in biological channels.


Asunto(s)
Filtración/métodos , Transporte Iónico/fisiología , Nanotecnología/métodos , Modelos Químicos , Modelos Moleculares , Simulación de Dinámica Molecular , Porosidad , Agua/química
15.
Environ Sci Technol ; 46(19): 10597-604, 2012 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-22866902

RESUMEN

The influence of solute-solute interactions on hormone retention during nanofiltration (NF) was quantified and mechanisms underlying retention identified. A new approach to predict both the mass of hormone sorbed to organic matter and the retention of hormone influenced by solute-solute interactions was applied. Laboratory-scale experiments were carried out in a cross-flow filtration system examining organic matter concentration, solution pH, and hormone type. Solute-solute interactions between HA and estrone improved estrone retention while decreasing estrone adsorption to membranes. HA concentration determined the amount of estrone bound to HA and hence affected estrone retention based on the mechanism of size exclusion. The solution pH influenced both solute-solute as well as solute-membrane interactions. Solute-solute interactions were most important below the pK(a) of estrone, whereas charge repulsion between estrone and negative functional groups of the membrane dominated estrone retention above the pK(a). Of the four hormones studied, progesterone had the greatest affinity for both HA and NF membrane, which was attributed to hydrogen bonding ability. Using partition coefficients K(OM) from solid-phase microextraction (SPME) resulted in very good agreement between predicted and experimental retention.


Asunto(s)
Contaminantes Ambientales/química , Hormonas/química , Sustancias Húmicas , Estrona/química , Filtración/métodos , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Nanotecnología/métodos , Progesterona/química , Microextracción en Fase Sólida , Soluciones , Testosterona/química
16.
Phys Chem Chem Phys ; 14(33): 11633-8, 2012 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-22821005

RESUMEN

The transport of anionic drinking water contaminants (fluoride, chloride, nitrate and nitrite) through narrow pores ranging in effective radius from 2.5 to 6.5 Å was systematically evaluated using molecular dynamics simulations to elucidate the magnitude and origin of energetic barriers encountered in nanofiltration. Free energy profiles for ion transport through the pores show that energy barriers depend on pore size and ion properties and that there are three key regimes that affect transport. The first is where the ion can fit in the pore with its full inner hydration shell, the second is where the pore size is between the bare ion and hydrated radius, and the third is where the ion size approaches that of the pore. Energy barriers in the first regime are relatively small and due to rearrangement of the inner hydration shell and/or displacement of further hydration shells. Energy barriers in the second regime are due to partial dehydration and are larger than barriers seen in the first regime. In the third regime, the pore becomes too small for bare ions to fit regardless of hydration and thus energy barriers are very high. In the second regime where partial dehydration controls transport, the trend in the slopes of the change in energy barrier with pore size corresponds to the hydration strength of the anions.


Asunto(s)
Aniones/química , Agua Potable/química , Filtración , Transporte Iónico , Simulación de Dinámica Molecular , Nanotecnología , Termodinámica
17.
Nat Nanotechnol ; 17(4): 417-423, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35361923

RESUMEN

Micropollutants in the aquatic environment pose a high risk to both environmental and human health. The photocatalytic degradation of steroid hormones in a flow-through photocatalytic membrane reactor under UV light (365 nm) at environmentally relevant concentrations (50 ng l-1 to 1 mg l-1) was examined using a polyethersulfone-titanium dioxide (PES-TiO2) membrane. The TiO2 nanoparticles (10-30 nm) were immobilized both on the surface and in the nanopores (220 nm) of the membrane. Water quality and operational parameters were evaluated to elucidate the limiting factors in the degradation of steroid hormones. Flow through the photocatalytic membrane increased contact between the micropollutants and ·OH in the pores. Notably, 80% of both oestradiol and oestrone was removed from a 200 ng l-1 feed (at 25 mW cm-2 and 300 l m-2 h-1). Progesterone and testosterone removal was lower at 44% and 33%, respectively. Increasing the oestradiol concentration to 1 mg l-1 resulted in 20% removal, whereas with a 100 ng l-1 solution, a maximum removal of 94% was achieved at 44 mW cm-2 and 60 l m-2 h-1. The effectiveness of the relatively well-known PES-TiO2 membrane for micropollutant removal has been demonstrated; this effectiveness is due to the nanoscale size of the membrane, which provides a high surface area and facilitates close contact of the radicals with the very small (0.8 nm) micropollutant at an extremely low, environmentally relevant concentration (100 ng l-1).


Asunto(s)
Contaminantes Químicos del Agua , Catálisis , Estradiol , Humanos , Polímeros , Esteroides , Sulfonas , Titanio , Contaminantes Químicos del Agua/análisis
18.
Sci Total Environ ; 829: 154287, 2022 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-35248638

RESUMEN

Selenium (Se) is a dissolved oxyanion drinking water contaminant requiring appropriate removal technologies. The removal of selenite (SeIV) and selenite (SeVI) with nanofiltration (NF) was investigated with an emphasis on the role of Se speciation and membrane charge screening on the retention mechanisms. The pH (2 to 12) showed strong pH dependence of Se retention, which was due to the speciation. No significant impact of salinity was observed by increasing NaCl concentration from 0.58 to 20 g/L. Application of the Donnan steric pore partitioning model with dielectric exclusion (DSPM-DE) showed that Donnan exclusion was the dominant retention mechanism for the oxyanions Se species. Nine different organic matter (OM) types were investigated at 10 mgC/L to determine if OM affects Se retention. Only OM characterised by negatively charged fractions, such as humic acid (HA), enhanced Se retention with NF270 of up to 20% for SeIV and 10% for SeVI. This was explained by enhanced Donnan exclusion. NF270 was effective in removing Se from real water (Gahard groundwater, Ille et Vilaine, France). The EU guideline (20 µg/L) of Se in drinking water was achieved with comparable performance to OM-free experiments using synthetic waters.


Asunto(s)
Agua Potable , Selenio , Francia , Sustancias Húmicas/análisis , Ácido Selenioso , Selenio/análisis
19.
Water Res ; 221: 118752, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35810632

RESUMEN

Organic matter (OM) in surface and ground waters may cause membrane fouling that is laborious to clean once established. Spontaneous osmotic backwash (OB) induced by solar irradiance fluctuation has been demonstrated for early mineral scaling/organic fouling control in decentralised small-scale photovoltaic powered-nanofiltration/reverse osmosis (PV-NF/RO) membrane systems. However, various OM types will interact differently with membranes which in turn affects the effectiveness of OB. This work evaluates the suitability of spontaneous OB cleaning for eleven OM types (covering low-molecular-weight organics (LMWO), humic substances, polyphenolic compounds and biopolymers) regarding adhesive interactions with NF/RO membranes. The adhesive interactions were quantified by an asymmetric flow field-flow fractionation coupled with an organic carbon detector (FFFF-OCD). The underlying mechanism of OM-membrane adhesive interactions affecting OB cleaning was elucidated. The results indicate that humic acid (a typical humic substance) and tannic acid (a typical polyphenolic compound) induced stronger adhesive interaction with NF/RO membranes than biopolymers and LMWO. When the mass loss of an OM due to adhesion was below a critical range, the spontaneous OB is most effective (>85% flux recovery); and above this range, the OB becomes ineffective (<50% flux recovery). Polyphenolic compounds and humic substances resulted in lower OB cleaning efficiency, due to their higher aromatic content, enhancing hydrophobic interactions and hydrogen bonding. Calcium-facilitated adhesion of some OM types (such as humic substances, polyphenolics and biopolymers) increased irreversible organic fouling potential and weakened OB cleaning, which was verified by both FFFF-OCD and membrane filtration results. This work provides a guidance to formulate strategies to enhance spontaneous OB cleaning, such as first identifying the adhesion of OM in feedwater (surface and ground waters) using FFFF-OCD, and then removing "sticky" OM using suitable pre-treatment processes.


Asunto(s)
Sustancias Húmicas , Purificación del Agua , Adhesivos , Membranas Artificiales , Ósmosis , Energía Renovable , Purificación del Agua/métodos
20.
Water Res ; 190: 116683, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33373946

RESUMEN

Nitrate, arsenic and fluoride are some of the most hazardous elements contaminating groundwater resources. In this work, the impact of operative (flowrate, electricpotential) and water quality (salinity, contaminant feed concentration, pH) parameters on brackish water decontamination was investigated using a batch electrodialysis (ED) system. Electrodialysis at low electric potentials (5 V) was more selective toward monovalent ions, at higher potentials (>15 V) removal of all ions increased and selectivity approached one, meaning removal of all ions. Changing the flowrate from 30 to 70 L/h, increased nitrate and fluoride removal slightly, while arsenic(V) removal was maximum at 50 L/h. Rising salinity delayed removal of ions with low ionic mobility and diffusivity (i.e. fluoride, arsenic(V)). Increased feed concentration of contaminants had no impact on removal values. pH variations did not impact the nitrate, fluoride and salinity removal, yet arsenic(V) removal was greatly pH dependent. This was explained in part by lower diffusivity and higher hydration number of bi- and trivalent species of arsenic(V) at basic pH. The results of this work showed the significance of ionic characteristics (diffusivity, ionic mobility, hydration number) in ED. Nitrate concentrations satisfied guideline threshold in all experiments with concentrations below 50 mg/L. Lowest arsenic(V) concentration was 35 µg/L at the highest electric potential, 25 V. Using ionic characteristics makes separation of different ions possible, providing new opportunities for ED in environmentally friendly processes (e.g. resource recovery and zero liquid discharge).


Asunto(s)
Arsénico , Agua Subterránea , Contaminantes Químicos del Agua , Purificación del Agua , Arsénico/análisis , Fluoruros , Nitratos , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA