Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Planta Med ; 90(7-08): 588-594, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38843798

RESUMEN

Antimicrobial photodynamic therapy (aPDT) is an evolving treatment strategy against human pathogenic microbes such as the Candida species, including the emerging pathogen C. auris. Using a modified EUCAST protocol, the light-enhanced antifungal activity of the natural compound parietin was explored. The photoactivity was evaluated against three separate strains of five yeasts, and its molecular mode of action was analysed via several techniques, i.e., cellular uptake, reactive electrophilic species (RES), and singlet oxygen yield. Under experimental conditions (λ = 428 nm, H = 30 J/cm2, PI = 30 min), microbial growth was inhibited by more than 90% at parietin concentrations as low as c = 0.156 mg/L (0.55 µM) for C. tropicalis and Cryptococcus neoformans, c = 0.313 mg/L (1.10 µM) for C. auris, c = 0.625 mg/L (2.20 µM) for C. glabrata, and c = 1.250 mg/L (4.40 µM) for C. albicans. Mode-of-action analysis demonstrated fungicidal activity. Parietin targets the cell membrane and induces cell death via ROS-mediated lipid peroxidation after light irradiation. In summary, parietin exhibits light-enhanced fungicidal activity against all Candida species tested (including C. auris) and Cryptococcus neoformans, covering three of the four critical threats on the WHO's most recent fungal priority list.


Asunto(s)
Antifúngicos , Cryptococcus neoformans , Pruebas de Sensibilidad Microbiana , Antifúngicos/farmacología , Cryptococcus neoformans/efectos de los fármacos , Cryptococcus neoformans/efectos de la radiación , Candida auris/efectos de los fármacos , Luz , Candida/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Fotoquimioterapia/métodos , Antraquinonas/farmacología , Fármacos Fotosensibilizantes/farmacología
2.
Photosynth Res ; 156(3): 325-336, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36821017

RESUMEN

The requirements for novel and innovative production systems expedite research on light emitting diode-based illumination in a life science context. In course of these rapid developments, the scientific community is in need of a consensus regarding to the characterization and presentation of the applied lighting conditions. This publication aims to establish a basic understanding of photon physics and propose guidelines for the conclusive usage of light related quantities. To illustrate the challenges in data handling, six different light sources were measured and characterized. Furthermore, a stepwise conversion within and in-between physical systems is presented, and an opportunity to extract information from weak data sets is demonstrated. The proposed calculations indicated flexibility in data handling, but revealed partial inaccuracy for colored light emitting diodes with spectral power distribution maxima far-off 550 nm compared to spectrometer-based measurements and conversions. Furthermore, it could be shown, that when comparing light properties, the determination of photometric quantities is incorrect to describe lighting systems for photosynthetic organism and the usage of luxmeter or similar photometric sensors should be avoided. The presented guidelines shall support scientists in applying a consistent and precise characterization of their illumination regimes, tailored to their requirements to avoid ambiguous communication and the generation of incorrect and thus incomparable data based on wrong quantities and units, such as lumen or lux, in future research.


Asunto(s)
Fotones , Fotosíntesis , Iluminación
3.
Microb Cell Fact ; 21(1): 1, 2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-34983506

RESUMEN

BACKGROUND: With the steady increase of antibiotic resistance, several strategies have been proposed in the scientific community to overcome the crisis. One of many successful strategies is the re-evaluation of known compounds, which have been early discarded out of the pipeline, with state-of-the-art know-how. Xanthoepocin, a polyketide widespread among the genus Penicillium with an interesting bioactivity spectrum against gram-positive bacteria, is such a discarded antibiotic. The purpose of this work was to (i) isolate larger quantities of this metabolite and chemically re-evaluate it with modern technology, (ii) to explore which factors lead to xanthoepocin biosynthesis in P. ochrochloron, and (iii) to test if it is beside its known activity against methicillin-resistant Staphylococcus aureus (MRSA), also active against linezolid and vancomycin-resistant Enterococcus faecium (LVRE)-a very problematic resistant bacterium which is currently on the rise. RESULTS: In this work, we developed several new protocols to isolate, extract, and quantify xanthoepocin out of bioreactor batch and petri dish-grown mycelium of P. ochrochloron. The (photo)chemical re-evaluation with state-of-the-art techniques revealed that xanthoepocin is a photolabile molecule, which produces singlet oxygen under blue light irradiation. The intracellular xanthoepocin content, which was highest under ammonium-limited conditions, varied considerably with the applied irradiation conditions in petri dish and bioreactor batch cultures. Using light-protecting measures, we achieved MIC values against gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA), which were up to 5 times lower than previously published. In addition, xanthoepocin was highly active against a clinical isolate of linezolid and vancomycin-resistant Enterococcus faecium (LVRE). CONCLUSIONS: This interdisciplinary work underlines that the re-evaluation of known compounds with state-of-the-art techniques is an important strategy in the combat against multiresistant bacteria and that light is a crucial factor on many levels that needs to receive more attention. With appropriate light protecting measures in the susceptibility tests, xanthoepocin proved to be a powerful antibiotic against MRSA and LVRE. Exploring the light response of other polyketides may be pivotal for re-introducing previously discarded metabolites into the antibiotic pipeline and to identify photosensitizers which might be used for (antimicrobial) photodynamic therapies.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple , Compuestos Epoxi/farmacología , Bacterias Grampositivas/efectos de los fármacos , Luz , Penicillium/química , Pironas/farmacología , Dispersión Dinámica de Luz , Pruebas de Sensibilidad Microbiana , Fotólisis
4.
Phys Rev Lett ; 108(7): 076101, 2012 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-22401228

RESUMEN

Helium adsorbed on C(60)(+) and C(70)(+) exhibits phenomena akin to helium on graphite. Mass spectra suggest that commensurate layers form when all carbon hexagons and pentagons are occupied by one He each, but that the solvation shell does not close until 60 He atoms are adsorbed on C(60)(+), or 62 on C(70)(+). Molecular dynamics simulations of C(60)He(n)(+) at 4 K show that the commensurate phase is solid. Helium added to C(60)He(32)(+) will displace some atoms from pentagonal sites, leading to coexistence of a registered layer of immobile atoms interlaced with a nonregistered layer of mobile atoms.

5.
Chemphyschem ; 13(2): 469-76, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22162091

RESUMEN

The electron ionization of helium droplets doped with methane clusters is investigated for the first time using high-resolution mass spectrometry. The dominant ion products ejected into the gas phase are the unprotonated (CH(4))(n)(+) cluster ions along with the protonated ions, CH(5)(+)(CH(4))(n-1). The mass spectra show clear evidence for magic numbers, which are broadly consistent with icosahedral shell closings. However, unusual features were observed, including different magic numbers for CH(5)(+)(CH(4))(n-1) (n=55, 148) when compared to (CH(4))(n)(+) (n=54, 147). Possible interpretations for some of these differences are proposed. Products of the type [C(2)H(x)(CH(4))(n)](+), which result from ion-molecule chemistry, are also observed and these too show clear magic number features. Finally, we report the first observation of (CH(4))(n)(2+) dications from methane clusters. The threshold for dication survival occurs at n≥70 and is in good agreement with a liquid droplet model for fission of multiply charged ions. Furthermore, we present evidence showing that these dications are formed by an unusual two-step mechanism which is initiated by charge transfer to generate a monocation and is then followed by Penning ionization to generate a dication.

6.
Phys Chem Chem Phys ; 13(3): 1092-8, 2011 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-21072422

RESUMEN

Helium nanodroplets are co-doped with C(60) and ammonia. Mass spectra obtained by electron ionization reveal cations containing ammonia clusters complexed with up to four C(60) units. The high mass resolution of Δm/m≈ 1/6000 makes it possible to separate the contributions of protonated, unprotonated and dehydrogenated ammonia. C(60) aggregates suppress the proton-transfer reaction which usually favors the appearance of protonated ammonia cluster ions. Unprotonated C(x)(NH(3))(n)(+) ions (x = 60, 120, 180) exceed the abundance of the corresponding protonated ions if n < 5; for larger values of n the abundances of C(60)(NH(3))(n)(+) and C(60)(NH)(n-1)NH(4)(+) become about equal. Dehydrogenated C(60)NH(2)(+) ions are relatively abundant; their formation is attributed to a transient doubly charged C(60)-ammonia complex which forms either by an Auger process or by Penning ionization following charge transfer between the primary He(+) ion and C(60). The abundance of C(x)NH(3)(+) and C(x)NH(4)(+) ions (x = 120 or 180) is one to two orders of magnitude weaker than the abundance of ions containing one or two additional ammonia molecules. However, a model involving evaporation of NH(3) or NH(4) from the presumably weakly bound C(x)NH(3)(+) and C(x)NH(4)(+) ions is at odds with the lack of enhancement in the abundance of C(120)(+) and C(180)(+). Mass spectra of C(60) dimers complexed with water complement a previous study of C(60)(H(2)O)(n)(+) recorded at much lower mass resolution.


Asunto(s)
Amoníaco/química , Fulerenos/química , Helio/química , Iones/química , Espectrometría de Masas , Nanopartículas/química , Protones , Agua/química
7.
J Chem Phys ; 135(4): 044309, 2011 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-21806121

RESUMEN

The submersion of sodium clusters beyond a critical size in helium nanodroplets, which has recently been predicted on theoretical grounds, is demonstrated for the first time. Confirmation of a clear transition from a surface location, which occurs for alkali atoms and small clusters, to full immersion for larger clusters, is provided by identifying the threshold electron energy required to initiate Na(n) cluster ionization. On the basis of these measurements, a lower limit for the cluster size required for submersion, n ≥ 21, has been determined. This finding is consistent with the recent theoretical prediction.

8.
Front Microbiol ; 12: 703544, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34421861

RESUMEN

Antimicrobial resistance is one of the biggest health and subsequent economic threat humanity faces. Next to massive global awareness campaigns, governments and NGOs alike stress the need for new innovative strategies to treat microbial infections. One of such innovative strategies is the photodynamic antimicrobial chemotherapy (PACT) in which the synergistic effects of photons and drugs are exploited. While many promising reports are available, PACT - and especially the drug-design part behind - is still in its infancy. Common best-practice rules, such as the EUCAST or CLSI protocols for classic antibiotics as well as high-throughput screenings, are missing, and this, in turn, hampers the identification of hit structures. Hit-like structures might come from synthetic approaches or from natural sources. They are identified via activity-guided synthesis or isolation strategies. As source for new antimicrobials, fungi are highly ranked. They share the same ecological niche with many other microbes and consequently established chemical strategies to combat with the others. Recently, in members of the Cortinariaceae, especially of the subgenus Dermocybe, photoactive metabolites were detected. To study their putative photoantimicrobial effect, a photoantimicrobial high-throughput screening (HTS) based on The European Committee on Antimicrobial Susceptibility Testing (EUCAST) was established. After validation, the established HTS was used to evaluate a sample set containing six colorful representatives from the genus Cortinarius (i.e., Cortinarius callisteus, C. rufo-olivaceus, C. traganus, C. trivialis, C. venetus, and C. xanthophyllus). The assay is built on a uniform, light-emitting diode (LED)-based light irradiation across a 96-well microtiter plate, which was achieved by a pioneering arrangement of the LEDs. The validation of the assay was accomplished with well-known photoactive drugs, so-called photosensitizers, utilizing six distinct emission wavelengths (λexc = 428, 478, 523, 598, or 640 nm) and three microbial strains (Candida albicans, Staphylococcus aureus, and Escherichia coli). Evaluating the extracts of six Cortinarius species revealed two highly promising species, i.e., C. rufo-olivaceus and C. xanthophyllus. Extracts from the latter were photoactive against the Gram-positive S. aureus (c = 7.5 µg/ml, H = 30 J/cm2, λ = 478 nm) and the fungus C. albicans (c = 75 µg/ml, H = 30 J/cm2, λ = 478 nm).

9.
Metabolites ; 11(11)2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34822449

RESUMEN

Fungi have developed a wide array of defense strategies to overcome mechanical injuries and pathogen infections. Recently, photoactivity has been discovered by showing that pigments isolated from Cortinarius uliginosus produce singlet oxygen under irradiation. To test if this phenomenon is limited to dermocyboid Cortinarii, six colourful Cortinarius species belonging to different classical subgenera (i.e., Dermocybe, Leprocybe, Myxacium, Phlegmacium, and Telamonia) were investigated. Fungal extracts were explored by the combination of in vitro photobiological methods, UHPLC coupled to high-resolution tandem mass spectrometry (UHPLC-HRMS2), feature-based molecular networking (FBMN), and metabolite dereplication techniques. The fungi C. rubrophyllus (Dermocybe) and C. xanthophyllus (Phlegmacium) exhibited promising photobiological activity in a low concentration range (1-7 µg/mL). Using UHPLC-HRMS2-based metabolomic tools, the underlying photoactive principle was investigated. Several monomeric and dimeric anthraquinones were annotated as compounds responsible for the photoactivity. Furthermore, the results showed that light-induced activity is not restricted to a single subgenus, but rather is a trait of Cortinarius species of different phylogenetic lineages and is linked to the presence of fungal anthraquinones. This study highlights the genus Cortinarius as a promising source for novel photopharmaceuticals. Additionally, we showed that putative dereplication of natural photosensitizers can be done by FBMN.

10.
Phys Rev Lett ; 105(24): 243402, 2010 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-21231525

RESUMEN

We report the observation of the ejection of electrons caused by collisions of excited atoms with ions, rather than neutrals, leading to the production of doubly charged ions. Doping superfluid He droplets with methyl iodide and exposing them to electrons enhances the formation of doubly charged iodine atoms at the threshold for the production of two metastable He atoms. These observations point toward a novel ionization process where doubly charged ions are produced by sequential Penning ionization. In some cases, depending on the neutral target, the process also leads to a subsequent Coulomb explosion of the dopant.

11.
Phys Chem Chem Phys ; 11(37): 8240-3, 2009 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-19756280

RESUMEN

Electron attachment to the explosive trinitrotoluene (TNT) embedded in Helium droplets (TNT@He) generates the non-decomposed complexes (TNT)(n)(-), but no fragment ions in the entire energy range 0-12 eV. This strongly contrasts the behavior of single TNT molecules in the gas phase at ambient temperatures, where electron capture leads to a variety of different fragmentation products via different dissociative electron attachment (DEA) reactions. Single TNT molecules decompose by attachment of an electron at virtually no extra energy reflecting the explosive nature of the compound. The complete freezing of dissociation intermediates in TNT embedded in the droplet is explained by the particular mechanisms of DEA in nitrobenzenes, which is characterized by complex rearrangement processes in the transient negative ion (TNI) prior to decomposition. These mechanisms provide the condition for effective energy withdrawal from the TNI into the dissipative environment thereby completely suppressing its decomposition.


Asunto(s)
Electrones , Congelación , Helio/química , Trinitrotolueno/química , Espectrometría de Masas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA