Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Electron Spectros Relat Phenomena ; 195: 293-300, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25284953

RESUMEN

Here we report on a combined experimental and theoretical study on the structural and electronic properties of a monolayer of Copper-Phthalocyanine (CuPc) on the Au(1 1 0) surface. Low-energy electron diffraction reveals a commensurate overlayer unit cell containing one adsorbate species. The azimuthal alignment of the CuPc molecule is revealed by comparing experimental constant binding energy (kxky )-maps using angle-resolved photoelectron spectroscopy with theoretical momentum maps of the free molecule's highest occupied molecular orbital (HOMO). This structural information is confirmed by total energy calculations within the framework of van-der-Waals corrected density functional theory. The electronic structure is further analyzed by computing the molecule-projected density of states, using both a semi-local and a hybrid exchange-correlation functional. In agreement with experiment, the HOMO is located about 1.2 eV below the Fermi-level, while there is no significant charge transfer into the molecule and the CuPc LUMO remains unoccupied on the Au(1 1 0) surface.

2.
Nat Commun ; 13(1): 2741, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35585096

RESUMEN

Time-resolved momentum microscopy provides insight into the ultrafast interplay between structural and electronic dynamics. Here we extend orbital tomography into the time domain in combination with time-resolved momentum microscopy at a free-electron laser (FEL) to follow transient photoelectron momentum maps of excited states of a bilayer pentacene film on Ag(110). We use optical pump and FEL probe pulses by keeping FEL source conditions to minimize space charge effects and radiation damage. From the momentum microscopy signal, we obtain time-dependent momentum maps of the excited-state dynamics of both pentacene layers separately. In a combined experimental and theoretical study, we interpret the observed signal for the bottom layer as resulting from the charge redistribution between the molecule and the substrate induced by excitation. We identify that the dynamics of the top pentacene layer resembles excited-state molecular dynamics.

3.
J Chem Phys ; 131(14): 144701, 2009 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-19831458

RESUMEN

The electronic structure of the prototype metal/organic contact 3,4,9,10-perylene-tetracarboxylic acid dianhydride (PTCDA) on a Ag(111)-surface has been investigated using time- and angle-resolved two-photon photoelectron spectroscopy (2PPE). Our analysis addresses particularly the nature of the interface state (IS) emerging at the interface due to the substrate-adsorbate interaction [C. H. Schwalb, S. Sachs, M. Marks et al., Phys. Rev. Lett. 101, 146801 (2008)]. Its free-electron-like dispersion and a possible backfolding at the surface Brillouin zone boundaries are discussed. Time-resolved pump-probe experiments reveal the inelastic electron lifetime along the dispersion parabola and show its decrease for increasing parallel momentum. The temperature dependence of the peak linewidth indicates a coupling of the IS to molecular vibrations. Moreover, additional aspects are addressed, such as the determination of the electron attenuation length of photoelectrons for low kinetic energy originating from the IS and the work function change of the sample upon PTCDA adsorption with very high energy resolution.

4.
J Phys Chem B ; 110(43): 21826-32, 2006 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-17064146

RESUMEN

Monolayers of alkyl chains, attached through direct Si-C bonds to Si(111), via phosphonates to GaAs(100) surfaces, or deposited as alkyl-silane monolayers on SiO2, are investigated by ultraviolet and inverse photoemission spectroscopy and X-ray absorption spectroscopy. Exposure to ultraviolet radiation from a He discharge lamp, or to a beam of energetic electrons, leads to significant damage, presumably associated with radiation- or electron-induced H-abstraction leading to carbon-carbon double-bond formation in the alkyl monolayer. The damage results in an overall distortion of the valence spectrum, in the appearance of (occupied) states above the highest occupied molecular orbital of the alkyl molecule, and in a characteristic (unoccupied state) pi resonance at the edge of the carbon absorption peak. These distortions present a serious challenge for the interpretation of the electronic structure of the monolayer system. We show that extrapolation to zero damage at short exposure times eliminates extrinsic features and allows a meaningful extraction of the density of state of the pristine monolayer from spectroscopy measurements.

5.
J Colloid Interface Sci ; 354(1): 23-30, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21092980

RESUMEN

Thermally annealed nanodiamond has been functionalized by C-C coupling of the partially graphitized diamond surface using aryl diazonium salts. Depending on the terminal functional groups, the modified bucky diamond nanoparticles show good solubility (up to 0.63mgmL(-1)) in different solvents. The agglomerate size of the originally strongly bound detonation diamond (>0.5µm) is substantially reduced to ∼20-50nm by this chemical procedure and without using mechanical techniques such as strong ultrasound or milling. Arylation with functionalized aryl diazonium salts carrying COOH, SO(3)H, NO(2) or bromoethyl groups opens the way for further covalent grafting of organic structures. Arylation with Ar-COOH or Ar-SO(3)H leads to the formation of stable colloidal solutions in water and physiological media (i.e. PBS buffer), an important prerequisite for biomedical applications.

6.
Chem Commun (Camb) ; (41): 6213-5, 2009 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-19826672

RESUMEN

Optical and electrochemical investigations of triarylamine redox centres attached to gold nanoparticles via a pi-conjugated bridge show intervalence charge-transfer bands which prove to be surprisingly strong interchromophore interactions.


Asunto(s)
Aminas/química , Oro/química , Nanopartículas del Metal/química , Electroquímica , Modelos Moleculares , Oxidación-Reducción , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA