Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Blood ; 141(23): 2878-2890, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37018657

RESUMEN

Iron is an essential cellular metal that is important for many physiological functions including erythropoiesis and host defense. It is absorbed from the diet in the duodenum and loaded onto transferrin (Tf), the main iron transport protein. Inefficient dietary iron uptake promotes many diseases, but mechanisms regulating iron absorption remain poorly understood. By assessing mice that harbor a macrophage-specific deletion of the tuberous sclerosis complex 2 (Tsc2), a negative regulator of mechanistic target of rapamycin complex 1 (mTORC1), we found that these mice possessed various defects in iron metabolism, including defective steady-state erythropoiesis and a reduced saturation of Tf with iron. This iron deficiency phenotype was associated with an iron import block from the duodenal epithelial cells into the circulation. Activation of mTORC1 in villous duodenal CD68+ macrophages induced serine protease expression and promoted local degradation of Tf, whereas the depletion of macrophages in mice increased Tf levels. Inhibition of mTORC1 with everolimus or serine protease activity with nafamostat restored Tf levels and Tf saturation in the Tsc2-deficient mice. Physiologically, Tf levels were regulated in the duodenum during the prandial process and Citrobacter rodentium infection. These data suggest that duodenal macrophages determine iron transfer to the circulation by controlling Tf availability in the lamina propria villi.


Asunto(s)
Hierro de la Dieta , Transferrina , Ratones , Animales , Transferrina/metabolismo , Hierro de la Dieta/metabolismo , Hierro/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Dieta , Duodeno/metabolismo , Receptores de Transferrina/metabolismo
2.
J Exp Bot ; 66(16): 5103-12, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26041320

RESUMEN

The phytohormone auxin is a vital growth regulator in plants. In the root epidermis auxin steers root organ growth. However, the mechanisms that allow adjacent tissues to integrate growth are largely unknown. Here, the focus is on neighbouring epidermal root tissues to assess the integration of auxin-related growth responses. The pharmacologic, genetic, and live-cell imaging approaches reveal that PIN2 auxin efflux carriers are differentially controlled in tricho- and atrichoblast cells. PIN2 proteins show lower abundance at the plasma membrane of trichoblast cells, despite showing higher rates of intracellular trafficking in these cells. The data suggest that PIN2 proteins display distinct cell-type-dependent trafficking rates to the lytic vacuole for degradation. Based on this insight, it is hypothesized that auxin-dependent processes are distinct in tricho- and atrichoblast cells. Moreover, genetic interference with epidermal patterning supports this assumption and suggests that tricho- and atrichoblasts have distinct importance for auxin-sensitive root growth and gravitropic responses.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Ácidos Indolacéticos/metabolismo , Epidermis de la Planta/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Células Vegetales/metabolismo , Células Vegetales/ultraestructura , Epidermis de la Planta/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Transporte de Proteínas
3.
Elife ; 112022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35686734

RESUMEN

The vacuole has a space-filling function, allowing a particularly rapid plant cell expansion with very little increase in cytosolic content (Löfke et al., 2015; Scheuring et al., 2016; Dünser et al., 2019). Despite its importance for cell size determination in plants, very little is known about the mechanisms that define vacuolar size. Here, we show that the cellular and vacuolar size expansions are coordinated. By developing a pharmacological tool, we enabled the investigation of membrane delivery to the vacuole during cellular expansion. Our data reveal that endocytic membrane sorting from the plasma membrane to the vacuole is enhanced in the course of rapid root cell expansion. While this 'compromise' mechanism may theoretically at first decelerate cell surface enlargements, it fuels vacuolar expansion and, thereby, ensures the coordinated augmentation of vacuolar occupancy in dynamically expanding plant cells.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Citosol/metabolismo , Transporte de Proteínas , Vacuolas/metabolismo
4.
Nat Commun ; 10(1): 3540, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31387989

RESUMEN

Directional organ growth allows the plant root system to strategically cover its surroundings. Intercellular auxin transport is aligned with the gravity vector in the primary root tips, facilitating downward organ bending at the lower root flank. Here we show that cytokinin signaling functions as a lateral root specific anti-gravitropic component, promoting the radial distribution of the root system. We performed a genome-wide association study and reveal that signal peptide processing of Cytokinin Oxidase 2 (CKX2) affects its enzymatic activity and, thereby, determines the degradation of cytokinins in natural Arabidopsis thaliana accessions. Cytokinin signaling interferes with growth at the upper lateral root flank and thereby prevents downward bending. Our interdisciplinary approach proposes that two phytohormonal cues at opposite organ flanks counterbalance each other's negative impact on growth, suppressing organ growth towards gravity and allow for radial expansion of the root system.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Citocininas/metabolismo , Oxidorreductasas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Genoma de Planta/genética , Estudio de Asociación del Genoma Completo , Gravitropismo , Oxidorreductasas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/fisiología , Proteolisis , Biología de Sistemas
5.
Methods Mol Biol ; 1761: 191-197, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29525958

RESUMEN

The typical parameter used to evaluate the root growth response to gravity is the degree of root bending in time. This employs the quantification of the root tip angle toward gravity and, hence, does not directly assess the actual differential growth process. Here, we describe the cortical cell length as a parameter to quantify cell elongation during the gravitropic response, using median longitudinal confocal sections. This analysis depicts that root organ bending is a consequence of differential cellular elongation on the upper versus lower side of the gravistimulated root. Moreover, we introduce here a simple mounting setup that is suitable to gravistimulate and subsequently image seedlings on upright microscopes.


Asunto(s)
Gravitropismo , Células Vegetales , Raíces de Plantas/citología , Raíces de Plantas/crecimiento & desarrollo , Microscopía , Células Vegetales/metabolismo , Desarrollo de la Planta , Epidermis de la Planta/citología , Epidermis de la Planta/crecimiento & desarrollo , Epidermis de la Planta/metabolismo , Raíces de Plantas/metabolismo
6.
Methods Mol Biol ; 1761: 199-208, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29525959

RESUMEN

Time-lapse imaging of roots is highly suitable for depicting gravitropic growth behaviors. However, roots may show faster or slower bending kinetics when compared to control as a result of differences in overall root growth. Accordingly, conditions that cause differential organ growth require growth rate normalization to compare gravitropic curvature. Here, we describe a simple normalization method for gravitropic root growth evaluation. We exemplify this method by exposing seedlings to distinct environmental conditions or disturbing the cellular auxin contents. This data shows that the method is suitable to discriminate between gravitropic and overall organ growth defects.


Asunto(s)
Gravitropismo , Desarrollo de la Planta , Raíces de Plantas/crecimiento & desarrollo , Arabidopsis/crecimiento & desarrollo , Fenotipo , Plantones , Imagen de Lapso de Tiempo
7.
Methods Mol Biol ; 1242: 83-92, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25408446

RESUMEN

Commercially available fluorescent dyes enable the fast and specific visualization of plant vacuoles, allowing for investigation of membrane dynamics and vacuolar biogenesis in living cells. Here, we describe different approaches tinting the tonoplast or the vacuolar lumen with a range of dyes, and illustrate its utilization with established fluorescent-tagged marker lines.


Asunto(s)
Arabidopsis/citología , Colorantes Fluorescentes/química , Células Vegetales/química , Coloración y Etiquetado/métodos , Vacuolas/química , Arabidopsis/química , Rastreo Celular/métodos , Fluoresceínas/química , Compuestos de Piridinio/química , Compuestos de Amonio Cuaternario/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA