Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nat Immunol ; 16(7): 708-17, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26054719

RESUMEN

The transcription factors Batf3 and IRF8 are required for the development of CD8α(+) conventional dendritic cells (cDCs), but the basis for their actions has remained unclear. Here we identified two progenitor cells positive for the transcription factor Zbtb46 that separately generated CD8α(+) cDCs and CD4(+) cDCs and arose directly from the common DC progenitor (CDP). Irf8 expression in CDPs required prior autoactivation of Irf8 that was dependent on the transcription factor PU.1. Specification of the clonogenic progenitor of CD8α(+) cDCs (the pre-CD8 DC) required IRF8 but not Batf3. However, after specification of pre-CD8 DCs, autoactivation of Irf8 became Batf3 dependent at a CD8α(+) cDC-specific enhancer with multiple transcription factor AP1-IRF composite elements (AICEs) within the Irf8 superenhancer. CDPs from Batf3(-/-) mice that were specified toward development into pre-CD8 DCs failed to complete their development into CD8α(+) cDCs due to decay of Irf8 autoactivation and diverted to the CD4(+) cDC lineage.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/inmunología , Células Dendríticas/inmunología , Factores Reguladores del Interferón/inmunología , Proteínas Represoras/inmunología , Células Madre/inmunología , Animales , Secuencia de Bases , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/metabolismo , Antígeno CD24/inmunología , Antígeno CD24/metabolismo , Antígenos CD8/inmunología , Antígenos CD8/metabolismo , Células Cultivadas , Células Clonales/inmunología , Células Clonales/metabolismo , Células Dendríticas/metabolismo , Citometría de Flujo , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Unión Proteica , Receptores Inmunológicos/inmunología , Receptores Inmunológicos/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Homología de Secuencia de Ácido Nucleico , Células Madre/metabolismo , Transcriptoma/genética , Transcriptoma/inmunología
2.
Immunity ; 46(5): 849-862.e7, 2017 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-28514690

RESUMEN

Monocytes are circulating, short-lived mononuclear phagocytes, which in mice and man comprise two main subpopulations. Murine Ly6C+ monocytes display developmental plasticity and are recruited to complement tissue-resident macrophages and dendritic cells on demand. Murine vascular Ly6C- monocytes patrol the endothelium, act as scavengers, and support vessel wall repair. Here we characterized population and single cell transcriptomes, as well as enhancer and promoter landscapes of the murine monocyte compartment. Single cell RNA-seq and transplantation experiments confirmed homeostatic default differentiation of Ly6C+ into Ly6C- monocytes. The main two subsets were homogeneous, but linked by a more heterogeneous differentiation intermediate. We show that monocyte differentiation occurred through de novo enhancer establishment and activation of pre-established (poised) enhancers. Generation of Ly6C- monocytes involved induction of the transcription factor C/EBPß and C/EBPß-deficient mice lacked Ly6C- monocytes. Mechanistically, C/EBPß bound the Nr4a1 promoter and controlled expression of this established monocyte survival factor.


Asunto(s)
Antígenos Ly/metabolismo , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Genómica , Monocitos/metabolismo , Animales , Biomarcadores , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Diferenciación Celular/genética , Análisis por Conglomerados , Epigénesis Genética , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Inmunofenotipificación , Masculino , Ratones , Ratones Noqueados , Células Precursoras de Monocitos y Macrófagos/clasificación , Células Precursoras de Monocitos y Macrófagos/metabolismo , Monocitos/citología , Monocitos/inmunología , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Fenotipo , Regiones Promotoras Genéticas , Unión Proteica
3.
Development ; 137(22): 3835-45, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20978075

RESUMEN

Differentiation of epithelial cells and morphogenesis of epithelial tubes or layers is closely linked with the establishment and remodeling of the apical junctional complex, which includes adherens junctions and tight junctions. Little is known about the transcriptional control of apical junctional complex components. Here, we show that the transcription factor grainyhead-like 2 (Grhl2), an epithelium-specific mammalian homolog of Drosophila Grainyhead, is essential for adequate expression of the adherens junction gene E-cadherin and the tight junction gene claudin 4 (Cldn4) in several types of epithelia, including gut endoderm, surface ectoderm and otic epithelium. We have generated Grhl2 mutant mice to demonstrate defective molecular composition of the apical junctional complex in these compartments that coincides with the occurrence of anterior and posterior neural tube defects. Mechanistically, we show that Grhl2 specifically associates with cis-regulatory elements localized at the Cldn4 core promoter and within intron 2 of the E-cadherin gene. Cldn4 promoter activity in epithelial cells is crucially dependent on the availability of Grhl2 and on the integrity of the Grhl2-associated cis-regulatory element. At the E-cadherin locus, the intronic Grhl2-associated cis-regulatory region contacts the promoter via chromatin looping, while loss of Grhl2 leads to a specific decrease of activating histone marks at the E-cadherin promoter. Together, our data provide evidence that Grhl2 acts as a target gene-associated transcriptional activator of apical junctional complex components and, thereby, crucially participates in epithelial differentiation.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Uniones Intercelulares/química , Factores de Transcripción/metabolismo , Animales , Cadherinas/metabolismo , Diferenciación Celular , Línea Celular , Claudina-4 , Perros , Células Epiteliales/citología , Células Epiteliales/metabolismo , Humanos , Uniones Intercelulares/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Factores de Transcripción/genética
4.
Blood ; 118(8): 2275-84, 2011 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-21730352

RESUMEN

The differentiation of HSCs into myeloid lineages requires the transcription factor PU.1. Whereas PU.1-dependent induction of myeloid-specific target genes has been intensively studied, negative regulation of stem cell or alternate lineage programs remains incompletely characterized. To test for such negative regulatory events, we searched for PU.1-controlled microRNAs (miRs) by expression profiling using a PU.1-inducible myeloid progenitor cell line model. We provide evidence that PU.1 directly controls expression of at least 4 of these miRs (miR-146a, miR-342, miR-338, and miR-155) through temporally dynamic occupation of binding sites within regulatory chromatin regions adjacent to their genomic coding loci. Ectopic expression of the most robustly induced PU.1 target miR, miR-146a, directed the selective differentiation of HSCs into functional peritoneal macrophages in mouse transplantation assays. In agreement with this observation, disruption of Dicer expression or specific antagonization of miR-146a function inhibited the formation of macrophages during early zebrafish (Danio rerio) development. In the present study, we describe a PU.1-orchestrated miR program that mediates key functions of PU.1 during myeloid differentiation.


Asunto(s)
Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Macrófagos Peritoneales/citología , Macrófagos Peritoneales/metabolismo , MicroARNs/genética , Proteínas Proto-Oncogénicas/genética , Transactivadores/genética , Animales , Diferenciación Celular/genética , Línea Celular , Linaje de la Célula/genética , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Mielopoyesis/genética , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , ARN Interferente Pequeño/genética , Transactivadores/antagonistas & inhibidores , Pez Cebra/embriología , Pez Cebra/genética
5.
Blood ; 117(10): 2827-38, 2011 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-21239694

RESUMEN

The transcription factor PU.1 occupies a central role in controlling myeloid and early B-cell development, and its correct lineage-specific expression is critical for the differentiation choice of hematopoietic progenitors. However, little is known of how this tissue-specific pattern is established. We previously identified an upstream regulatory cis element whose targeted deletion in mice decreases PU.1 expression and causes leukemia. We show here that the upstream regulatory cis element alone is insufficient to confer physiologic PU.1 expression in mice but requires the cooperation with other, previously unidentified elements. Using a combination of transgenic studies, global chromatin assays, and detailed molecular analyses we present evidence that PU.1 is regulated by a novel mechanism involving cross talk between different cis elements together with lineage-restricted autoregulation. In this model, PU.1 regulates its expression in B cells and macrophages by differentially associating with cell type-specific transcription factors at one of its cis-regulatory elements to establish differential activity patterns at other elements.


Asunto(s)
Linfocitos B/metabolismo , Regulación de la Expresión Génica/genética , Células Mieloides/metabolismo , Proteínas Proto-Oncogénicas/genética , Elementos Reguladores de la Transcripción/genética , Transactivadores/genética , Animales , Southern Blotting , Western Blotting , Separación Celular , Retroalimentación Fisiológica/fisiología , Citometría de Flujo , Expresión Génica , Hematopoyesis/genética , Humanos , Ratones , Ratones Transgénicos , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas Proto-Oncogénicas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transactivadores/metabolismo
6.
Stem Cell Reports ; 8(2): 346-359, 2017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28111277

RESUMEN

The lymphoid-myeloid transdifferentiation potentials of members of the C/EBP family (C/EBPα, ß, δ, and ε) were compared in v-Abl-immortalized primary B cells. Conversion of B cells to macrophages was readily induced by the ectopic expression of any C/EBP, and enhanced by endogenous C/EBPα and ß activation. High transgene expression of C/EBPß or C/EBPε, but not of C/EBPα or C/EBPδ, also induced the formation of granulocytes. Granulocytes and macrophages emerged in a mutually exclusive manner. C/EBPß-expressing B cells produced granulocyte-macrophage progenitor (GMP)-like progenitors when subjected to selective pressure to eliminate lymphoid cells. The GMP-like progenitors remained self-renewing and cytokine-independent, and continuously produced macrophages and granulocytes. In addition to their suitability to study myelomonocytic lineage bifurcation, lineage-switched GMP-like progenitors could reflect the features of the lympho-myeloid lineage switch observed in leukemic progression.


Asunto(s)
Linfocitos B/citología , Linfocitos B/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/genética , Transdiferenciación Celular/genética , Células Progenitoras de Granulocitos y Macrófagos/citología , Células Progenitoras de Granulocitos y Macrófagos/metabolismo , Animales , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Diferenciación Celular , Linaje de la Célula/genética , Proliferación Celular , Dosificación de Gen , Hematopoyesis/genética , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Humanos , Ratones , Familia de Multigenes , Fenotipo
7.
J Mol Biol ; 427(3): 670-87, 2015 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-25172539

RESUMEN

Cellular commitment to differentiation requires a tightly synchronized, spatial-temporal interaction of regulatory proteins with the basic DNA and chromatin. A complex network of mechanisms involving induction of lineage instructive transcription factors, installation or removal of histone modifications and changes in the DNA methylation pattern locally orchestrate the three-dimensional chromatin structure and determine cell fate. Maturation of myeloid lineages from hematopoietic stem cells has emerged as a powerful model to study those principles of chromatin mechanisms in cellular differentiation and lineage fate selection. This review summarizes recent knowledge and puts forward novel ideas on how dynamics in the epigenetic landscape of myeloid cells shape the development, immune activation and leukemic transformation outcome.


Asunto(s)
Diferenciación Celular , Cromatina/fisiología , Células Mieloides/citología , Animales , Metilación de ADN , Epigénesis Genética , Humanos , Células Mieloides/metabolismo
8.
J Exp Med ; 210(11): 2239-56, 2013 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-24101380

RESUMEN

Progression and disease relapse of chronic myeloid leukemia (CML) depends on leukemia-initiating cells (LIC) that resist treatment. Using mouse genetics and a BCR-ABL model of CML, we observed cross talk between Wnt/ß-catenin signaling and the interferon-regulatory factor 8 (Irf8). In normal hematopoiesis, activation of ß-catenin results in up-regulation of Irf8, which in turn limits oncogenic ß-catenin functions. Self-renewal and myeloproliferation become dependent on ß-catenin in Irf8-deficient animals that develop a CML-like disease. Combined Irf8 deletion and constitutive ß-catenin activation result in progression of CML into fatal blast crisis, elevated leukemic potential of BCR-ABL-induced LICs, and Imatinib resistance. Interestingly, activated ß-catenin enhances a preexisting Irf8-deficient gene signature, identifying ß-catenin as an amplifier of progression-specific gene regulation in the shift of CML to blast crisis. Collectively, our data uncover Irf8 as a roadblock for ß-catenin-driven leukemia and imply both factors as targets in combinatorial therapy.


Asunto(s)
Progresión de la Enfermedad , Resistencia a Antineoplásicos , Factores Reguladores del Interferón/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Vía de Señalización Wnt , Animales , Benzamidas/farmacología , Crisis Blástica/genética , Crisis Blástica/patología , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Humanos , Mesilato de Imatinib , Inmunofenotipificación , Factores Reguladores del Interferón/deficiencia , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Ratones , Células Mieloides/efectos de los fármacos , Células Mieloides/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Piperazinas/farmacología , Pirimidinas/farmacología , Células de Población Lateral/efectos de los fármacos , Células de Población Lateral/metabolismo , Células de Población Lateral/patología
9.
Cell Rep ; 3(5): 1617-28, 2013 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-23623495

RESUMEN

Dendritic cells (DCs) are essential regulators of immune responses; however, transcriptional mechanisms that establish DC lineage commitment are poorly defined. Here, we report that the PU.1 transcription factor induces specific remodeling of the higher-order chromatin structure at the interferon regulatory factor 8 (Irf8) gene to initiate DC fate choice. An Irf8 reporter mouse enabled us to pinpoint an initial progenitor stage at which DCs separate from other myeloid lineages in the bone marrow. In the absence of Irf8, this progenitor undergoes DC-to-neutrophil reprogramming, indicating that DC commitment requires an active, Irf8-dependent escape from alternative myeloid lineage potential. Mechanistically, myeloid Irf8 expression depends on high PU.1 levels, resulting in local chromosomal looping and activation of a lineage- and developmental-stage-specific cis-enhancer. These data delineate PU.1 as a concentration-dependent rheostat of myeloid lineage selection by controlling long-distance contacts between regulatory elements and suggest that specific higher-order chromatin remodeling at the Irf8 gene determines DC differentiation.


Asunto(s)
Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Células Dendríticas/citología , Factores Reguladores del Interferón/genética , Proteínas Proto-Oncogénicas/metabolismo , Transactivadores/metabolismo , Animales , Secuencia de Bases , Células de la Médula Ósea/citología , Diferenciación Celular , Linaje de la Célula , Células Cultivadas , Células Dendríticas/metabolismo , Humanos , Factores Reguladores del Interferón/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Mieloides/citología , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas/química , Transactivadores/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA