Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 126(23): 230505, 2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34170180

RESUMEN

Electric-field noise due to surfaces disturbs the motion of nearby trapped ions, compromising the fidelity of gate operations that are the basis for quantum computing algorithms. We present a method that predicts the effect of dielectric materials on the ion's motion. Such dielectrics are integral components of ion traps. Quantitative agreement is found between a model with no free parameters and measurements of a trapped ion in proximity to dielectric mirrors. We expect that this approach can be used to optimize the design of ion-trap-based quantum computers and network nodes.

2.
Phys Rev Lett ; 122(15): 153603, 2019 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-31050508

RESUMEN

We dispersively couple a single trapped ion to an optical cavity to extract information about the cavity photon-number distribution in a nondestructive way. The photon-number-dependent ac Stark shift experienced by the ion is measured via Ramsey spectroscopy. We use these measurements first to obtain the ion-cavity interaction strength. Next, we reconstruct the cavity photon-number distribution for coherent states and for a state with mixed thermal-coherent statistics, finding overlaps above 99% with the calibrated states.

3.
Opt Express ; 24(9): 9839-53, 2016 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-27137597

RESUMEN

We demonstrate fiber Fabry-Perot (FFP) cavities with concave mirrors that can be operated at cavity lengths as large as 1.5 mm without significant deterioration of the finesse. This is achieved by using a laser dot machining technique to shape spherical mirrors with ultralow roughness and employing single-mode fibers with large mode area for good mode matching to the cavity. Additionally, in contrast to previous FFPs, these cavities can be used over an octave-spanning frequency range with adequate coatings. We also show directly that shape deviations caused by the fiber's index profile lead to a finesse decrease as observed in earlier attempts to build long FFP cavities, and show a way to overcome this problem.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA