Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Bioorg Med Chem Lett ; 29(8): 1023-1029, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30773430

RESUMEN

Fascin is an actin binding and bundling protein that is not expressed in normal epithelial tissues but overexpressed in a variety of invasive epithelial tumors. It has a critical role in cancer cell metastasis by promoting cell migration and invasion. Here we report the crystal structures of fascin in complex with a series of novel and potent inhibitors. Structure-based elaboration of these compounds enabled the development of a series with nanomolar affinities for fascin, good physicochemical properties and the ability to inhibit fascin-mediated bundling of filamentous actin. These compounds provide promising starting points for fascin-targeted anti-metastatic therapies.


Asunto(s)
Antineoplásicos/síntesis química , Proteínas Portadoras/antagonistas & inhibidores , Diseño de Fármacos , Proteínas de Microfilamentos/antagonistas & inhibidores , Pirazoles/química , Piridinas/química , Quinolonas/química , Antineoplásicos/metabolismo , Sitios de Unión , Proteínas Portadoras/metabolismo , Cristalografía por Rayos X , Humanos , Concentración 50 Inhibidora , Proteínas de Microfilamentos/metabolismo , Simulación del Acoplamiento Molecular , Estructura Terciaria de Proteína , Pirazoles/metabolismo , Piridinas/metabolismo , Quinolonas/metabolismo , Relación Estructura-Actividad
2.
Nat Chem Biol ; 8(12): 969-74, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23103942

RESUMEN

Protein O-GlcNAcylation is an essential post-translational modification on hundreds of intracellular proteins in metazoa, catalyzed by O-linked ß-N-acetylglucosamine (O-GlcNAc) transferase (OGT) using unknown mechanisms of transfer and substrate recognition. Through crystallographic snapshots and mechanism-inspired chemical probes, we define how human OGT recognizes the sugar donor and acceptor peptide and uses a new catalytic mechanism of glycosyl transfer, involving the sugar donor α-phosphate as the catalytic base as well as an essential lysine. This mechanism seems to be a unique evolutionary solution to the spatial constraints imposed by a bulky protein acceptor substrate and explains the unexpected specificity of a recently reported metabolic OGT inhibitor.


Asunto(s)
Difosfatos/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Nucleótidos/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , Humanos , Cinética , Lisina/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Fosfatos/metabolismo , Unión Proteica , Conformación Proteica , Procesamiento Proteico-Postraduccional , Estereoisomerismo , Especificidad por Sustrato , Resonancia por Plasmón de Superficie , Uridina Difosfato Galactosa/metabolismo
3.
Cell Commun Signal ; 12: 54, 2014 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-25288205

RESUMEN

BACKGROUND: The myotonic dystrophy kinase-related CDC42-binding kinases MRCKα and MRCKß regulate actin-myosin contractility and have been implicated in cancer metastasis. Along with the related ROCK1 and ROCK2 kinases, the MRCK proteins initiate signalling events that lead to contractile force generation which powers cancer cell motility and invasion. A potential strategy for cancer therapy is to reduce metastasis by blocking MRCK activity, either alone or in combination with ROCK inhibition. However, to date no potent small molecule inhibitors have been developed with selectivity towards MRCK. RESULTS: Screening a kinase-focused small molecule chemical library resulted in the identification of compounds with inhibitory activity towards MRCK. Medicinal chemistry combined with in vitro enzyme profiling led to the discovery of 4-chloro-1-(4-piperidyl)-N-[5-(2-pyridyl)-1H-pyrazol-4-yl]pyrazole-3-carboxamide (BDP00005290; abbreviated as BDP5290) as a potent MRCK inhibitor. X-ray crystallography of the MRCKß kinase domain in complex with BDP5290 revealed how this ligand interacts with the nucleotide binding pocket. BDP5290 demonstrated marked selectivity for MRCKß over ROCK1 or ROCK2 for inhibition of myosin II light chain (MLC) phosphorylation in cells. While BDP5290 was able to block MLC phosphorylation at both cytoplasmic actin stress fibres and peripheral cortical actin bundles, the ROCK selective inhibitor Y27632 primarily reduced MLC phosphorylation on stress fibres. BDP5290 was also more effective at reducing MDA-MB-231 breast cancer cell invasion through Matrigel than Y27632. Finally, the ability of human SCC12 squamous cell carcinoma cells to invade a three-dimensional collagen matrix was strongly inhibited by 2 µM BDP5290 but not the identical concentration of Y27632, despite equivalent inhibition of MLC phosphorylation. CONCLUSIONS: BDP5290 is a potent MRCK inhibitor with activity in cells, resulting in reduced MLC phosphorylation, cell motility and tumour cell invasion. The discovery of this compound will enable further investigations into the biological activities of MRCK proteins and their contributions to cancer progression.


Asunto(s)
Antineoplásicos/farmacología , Proteína Quinasa de Distrofia Miotónica/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles/farmacología , Piridinas/farmacología , Amidas/farmacología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Humanos , Proteína Quinasa de Distrofia Miotónica/metabolismo , Invasividad Neoplásica , Quinasas Asociadas a rho/antagonistas & inhibidores , Quinasas Asociadas a rho/metabolismo
4.
PLoS Pathog ; 7(2): e1001268, 2011 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-21304939

RESUMEN

Refolding of viral class-1 membrane fusion proteins from a native state to a trimer-of-hairpins structure promotes entry of viruses into cells. Here we present the structure of the bovine leukaemia virus transmembrane glycoprotein (TM) and identify a group of asparagine residues at the membrane-distal end of the trimer-of-hairpins that is strikingly conserved among divergent viruses. These asparagines are not essential for surface display of pre-fusogenic envelope. Instead, substitution of these residues dramatically disrupts membrane fusion. Our data indicate that, through electrostatic interactions with a chloride ion, the asparagine residues promote assembly and profoundly stabilize the fusion-active structures that are required for viral envelope-mediated membrane fusion. Moreover, the BLV TM structure also reveals a charge-surrounded hydrophobic pocket on the central coiled coil and interactions with basic residues that cluster around this pocket are critical to membrane fusion and form a target for peptide inhibitors of envelope function. Charge-surrounded pockets and electrostatic interactions with small ions are common among class-1 fusion proteins, suggesting that small molecules that specifically target such motifs should prevent assembly of the trimer-of-hairpins and be of value as therapeutic inhibitors of viral entry.


Asunto(s)
Iones/metabolismo , Pliegue de Proteína , Proteínas de los Retroviridae/química , Proteínas de los Retroviridae/fisiología , Electricidad Estática , Secuencia de Aminoácidos , Animales , Antirretrovirales/química , Antirretrovirales/farmacología , Dominio Catalítico/efectos de los fármacos , Bovinos , Virus Linfotrópico T Tipo 1 Humano/química , Virus Linfotrópico T Tipo 1 Humano/efectos de los fármacos , Virus Linfotrópico T Tipo 1 Humano/metabolismo , Humanos , Enlace de Hidrógeno , Iones/química , Virus de la Leucemia Bovina/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Estructura Terciaria de Proteína/fisiología , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/fisiología , Retroviridae/metabolismo , Retroviridae/fisiología , Proteínas de los Retroviridae/metabolismo , Propiedades de Superficie , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/metabolismo
5.
EMBO J ; 27(20): 2780-8, 2008 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-18818698

RESUMEN

Post-translational modification of protein serines/threonines with N-acetylglucosamine (O-GlcNAc) is dynamic, inducible and abundant, regulating many cellular processes by interfering with protein phosphorylation. O-GlcNAcylation is regulated by O-GlcNAc transferase (OGT) and O-GlcNAcase, both encoded by single, essential, genes in metazoan genomes. It is not understood how OGT recognises its sugar nucleotide donor and performs O-GlcNAc transfer onto proteins/peptides, and how the enzyme recognises specific cellular protein substrates. Here, we show, by X-ray crystallography and mutagenesis, that OGT adopts the (metal-independent) GT-B fold and binds a UDP-GlcNAc analogue at the bottom of a highly conserved putative peptide-binding groove, covered by a mobile loop. Strikingly, the tetratricopeptide repeats (TPRs) tightly interact with the active site to form a continuous 120 A putative interaction surface, whereas the previously predicted phosphatidylinositide-binding site locates to the opposite end of the catalytic domain. On the basis of the structure, we identify truncation/point mutants of the TPRs that have differential effects on activity towards proteins/peptides, giving first insights into how OGT may recognise its substrates.


Asunto(s)
N-Acetilglucosaminiltransferasas/química , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Humanos , Modelos Biológicos , Conformación Molecular , Datos de Secuencia Molecular , N-Acetilglucosaminiltransferasas/metabolismo , Fosforilación , Unión Proteica , Procesamiento Proteico-Postraduccional , Homología de Secuencia de Aminoácido , Transducción de Señal , Especificidad por Sustrato , Xenopus
6.
Biochem J ; 432(1): 1-7, 2010 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-20863279

RESUMEN

Modification of cellular proteins with O-GlcNAc (O-linked N-acetylglucosamine) competes with protein phosphorylation and regulates a plethora of cellular processes. O-GlcNAcylation is orchestrated by two opposing enzymes, O-GlcNAc transferase and OGA (O-GlcNAcase or ß-N-acetylglucosaminidase), which recognize their target proteins via as yet unidentified mechanisms. In the present study, we uncovered the first insights into the mechanism of substrate recognition by human OGA. The structure of a novel bacterial OGA orthologue reveals a putative substrate-binding groove, conserved in metazoan OGAs. Guided by this structure, conserved amino acids lining this groove in human OGA were mutated and the activity on three different substrate proteins [TAB1 (transforming growth factor-ß-activated protein kinase 1-binding protein 1), FoxO1 (forkhead box O1) and CREB (cAMP-response-element-binding protein)] was tested in an in vitro deglycosylation assay. The results provide the first evidence that human OGA may possess a substrate-recognition mechanism that involves interactions with O-GlcNAcylated proteins beyond the GlcNAc-binding site, with possible implications for differential regulation of cycling of O-GlcNAc on different proteins.


Asunto(s)
Péptidos/metabolismo , Estructura Terciaria de Proteína , beta-N-Acetilhexosaminidasas/química , beta-N-Acetilhexosaminidasas/metabolismo , Acetilglucosamina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión/genética , Clonación Molecular , Secuencia Conservada/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Pruebas de Enzimas , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/metabolismo , Glicosilación , Células HEK293 , Humanos , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Unión Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Rhodobacteraceae/enzimología , Rhodobacteraceae/genética , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , beta-N-Acetilhexosaminidasas/genética
7.
Bioorg Med Chem ; 18(23): 8334-40, 2010 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-21044846

RESUMEN

Chitin is an essential structural component of the fungal cell wall. Chitinases are thought to be important for fungal cell wall remodelling, and inhibition of these enzymes has been proposed as a potential strategy for development of novel anti-fungals. The fungal pathogen Aspergillus fumigatus possesses two distinct multi-gene chitinase families. Here we explore acetazolamide as a chemical scaffold for the inhibition of an A. fumigatus 'plant-type' chitinase. A co-crystal structure of AfChiA1 with acetazolamide was used to guide synthesis and screening of acetazolamide analogues that yielded SAR in agreement with these structural data. Although acetazolamide and its analogues are weak inhibitors of the enzyme, they have a high ligand efficiency and as such are interesting leads for future inhibitor development.


Asunto(s)
Acetazolamida/química , Antifúngicos/química , Quitinasas/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Proteínas Fúngicas/antagonistas & inhibidores , Acetazolamida/síntesis química , Acetazolamida/farmacología , Secuencia de Aminoácidos , Antifúngicos/síntesis química , Antifúngicos/farmacología , Aspergillus fumigatus/enzimología , Sitios de Unión , Quitinasas/metabolismo , Cristalografía por Rayos X , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Proteínas Fúngicas/metabolismo , Datos de Secuencia Molecular , Alineación de Secuencia , Relación Estructura-Actividad
8.
Retrovirology ; 5: 70, 2008 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-18680566

RESUMEN

BACKGROUND: Human T-cell leukaemia virus (HTLV-1) and bovine leukaemia virus (BLV) entry into cells is mediated by envelope glycoprotein catalyzed membrane fusion and is achieved by folding of the transmembrane glycoprotein (TM) from a rod-like pre-hairpin intermediate to a trimer-of-hairpins. For HTLV-1 and for several virus groups this process is sensitive to inhibition by peptides that mimic the C-terminal alpha-helical region of the trimer-of-hairpins. RESULTS: We now show that amino acids that are conserved between BLV and HTLV-1 TM tend to map to the hydrophobic groove of the central triple-stranded coiled coil and to the leash and C-terminal alpha-helical region (LHR) of the trimer-of-hairpins. Remarkably, despite this conservation, BLV envelope was profoundly resistant to inhibition by HTLV-1-derived LHR-mimetics. Conversely, a BLV LHR-mimetic peptide antagonized BLV envelope-mediated membrane fusion but failed to inhibit HTLV-1-induced fusion. Notably, conserved leucine residues are critical to the inhibitory activity of the BLV LHR-based peptides. Homology modeling indicated that hydrophobic residues in the BLV LHR likely make direct contact with a pocket at the membrane-proximal end of the core coiled-coil and disruption of these interactions severely impaired the activity of the BLV inhibitor. Finally, the structural predictions assisted the design of a more potent antagonist of BLV membrane fusion. CONCLUSION: A conserved region of the HTLV-1 and BLV coiled coil is a target for peptide inhibitors of envelope-mediated membrane fusion and HTLV-1 entry. Nevertheless, the LHR-based inhibitors are highly specific to the virus from which the peptide was derived. We provide a model structure for the BLV LHR and coiled coil, which will facilitate comparative analysis of leukaemia virus TM function and may provide information of value in the development of improved, therapeutically relevant, antagonists of HTLV-1 entry into cells.


Asunto(s)
Antivirales/farmacología , Virus Linfotrópico T Tipo 1 Humano/efectos de los fármacos , Virus de la Leucemia Bovina/efectos de los fármacos , Péptidos/farmacología , Proteínas del Envoltorio Viral/química , Internalización del Virus/efectos de los fármacos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Antivirales/síntesis química , Secuencia Conservada , Células HeLa , Virus Linfotrópico T Tipo 1 Humano/química , Virus Linfotrópico T Tipo 1 Humano/fisiología , Humanos , Virus de la Leucemia Bovina/química , Virus de la Leucemia Bovina/fisiología , Modelos Moleculares , Datos de Secuencia Molecular , Péptidos/síntesis química , Estructura Terciaria de Proteína , Alineación de Secuencia , Especificidad de la Especie , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo
10.
Cancer Res ; 78(22): 6509-6522, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30279244

RESUMEN

Glioblastoma (GBM) is an aggressive and incurable primary brain tumor that causes severe neurologic, cognitive, and psychologic symptoms. Symptoms are caused and exacerbated by the infiltrative properties of GBM cells, which enable them to pervade the healthy brain and disrupt normal function. Recent research has indicated that although radiotherapy (RT) remains the most effective component of multimodality therapy for patients with GBM, it can provoke a more infiltrative phenotype in GBM cells that survive treatment. Here, we demonstrate an essential role of the actin-myosin regulatory kinase myotonic dystrophy kinase-related CDC42-binding kinase (MRCK) in mediating the proinvasive effects of radiation. MRCK-mediated invasion occurred via downstream signaling to effector molecules MYPT1 and MLC2. MRCK was activated by clinically relevant doses per fraction of radiation, and this activation was concomitant with an increase in GBM cell motility and invasion. Furthermore, ablation of MRCK activity either by RNAi or by inhibition with the novel small-molecule inhibitor BDP-9066 prevented radiation-driven increases in motility both in vitro and in a clinically relevant orthotopic xenograft model of GBM. Crucially, treatment with BDP-9066 in combination with RT significantly increased survival in this model and markedly reduced infiltration of the contralateral cerebral hemisphere.Significance: An effective new strategy for the treatment of glioblastoma uses a novel, anti-invasive chemotherapeutic to prevent infiltration of the normal brain by glioblastoma cells.Cancer Res; 78(22); 6509-22. ©2018 AACR.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Proteína Quinasa de Distrofia Miotónica/antagonistas & inhibidores , Actinas/química , Animales , Antineoplásicos/farmacología , Neoplasias Encefálicas/radioterapia , Miosinas Cardíacas/metabolismo , Línea Celular Tumoral , Movimiento Celular , Femenino , Glioblastoma/radioterapia , Humanos , Ratones , Ratones Desnudos , Microscopía Fluorescente , Cadenas Ligeras de Miosina/metabolismo , Fosfatasa de Miosina de Cadena Ligera/metabolismo , Miosinas/química , Invasividad Neoplásica , Fenotipo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo
11.
Cancer Res ; 78(8): 2096-2114, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29382705

RESUMEN

The myotonic dystrophy-related Cdc42-binding kinases MRCKα and MRCKß contribute to the regulation of actin-myosin cytoskeleton organization and dynamics, acting in concert with the Rho-associated coiled-coil kinases ROCK1 and ROCK2. The absence of highly potent and selective MRCK inhibitors has resulted in relatively little knowledge of the potential roles of these kinases in cancer. Here, we report the discovery of the azaindole compounds BDP8900 and BDP9066 as potent and selective MRCK inhibitors that reduce substrate phosphorylation, leading to morphologic changes in cancer cells along with inhibition of their motility and invasive character. In over 750 human cancer cell lines tested, BDP8900 and BDP9066 displayed consistent antiproliferative effects with greatest activity in hematologic cancer cells. Mass spectrometry identified MRCKα S1003 as an autophosphorylation site, enabling development of a phosphorylation-sensitive antibody tool to report on MRCKα status in tumor specimens. In a two-stage chemical carcinogenesis model of murine squamous cell carcinoma, topical treatments reduced MRCKα S1003 autophosphorylation and skin papilloma outgrowth. In parallel work, we validated a phospho-selective antibody with the capability to monitor drug pharmacodynamics. Taken together, our findings establish an important oncogenic role for MRCK in cancer, and they offer an initial preclinical proof of concept for MRCK inhibition as a valid therapeutic strategy.Significance: The development of selective small-molecule inhibitors of the Cdc42-binding MRCK kinases reveals their essential roles in cancer cell viability, migration, and invasive character. Cancer Res; 78(8); 2096-114. ©2018 AACR.


Asunto(s)
Antineoplásicos/uso terapéutico , Carcinoma de Células Escamosas/tratamiento farmacológico , Descubrimiento de Drogas , Proteína Quinasa de Distrofia Miotónica/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/uso terapéutico , Piridinas/uso terapéutico , Pirimidinas/uso terapéutico , Pirroles/uso terapéutico , Neoplasias Cutáneas/tratamiento farmacológico , Animales , Antineoplásicos/farmacología , Carcinoma de Células Escamosas/enzimología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Células HEK293 , Humanos , Ratones , Ratones Desnudos , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Piridinas/farmacología , Pirimidinas/farmacología , Pirroles/farmacología , Neoplasias Cutáneas/enzimología , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Biochem J ; 399(3): 427-34, 2006 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-16879102

RESUMEN

TAB1 [TAK1 (transforming growth factor-beta-activated kinase 1)-binding protein 1] is one of the regulatory subunits of TAK1, a protein kinase that lies at the head of three pro-inflammatory kinase cascades. In the current study we report the crystal structure of the N-terminal domain of TAB1. Surprisingly, TAB1 possesses a fold closely related to that of the PPM (Mg2+- or Mn2+-dependent protein phosphatase) family as demonstrated by the close structural similarity with protein phosphatase 2C alpha. However, we were unable to detect any phosphatase activity for TAB1 using a phosphopeptide or p-nitrophenyl phosphate as substrate. Although the overall protein phosphatase 2C alpha fold is conserved in TAB1, detailed structural analyses and mutagenesis studies show that several key residues required for dual metal-binding and catalysis are not present in TAB1, although binding of a single metal is supported by soaking experiments with manganese and isothermal titration calorimetry. Thus, it appears that TAB1 is a 'pseudophosphatase', possibly binding to and regulating accessibility of phosphorylated residues on substrates downstream of TAK1 or on the TAK1 complex itself.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Secuencia de Aminoácidos , Calorimetría , Catálisis , Cristalografía por Rayos X , Manganeso/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Nitrofenoles/metabolismo , Compuestos Organofosforados/metabolismo , Fosfoproteínas Fosfatasas/química , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas/metabolismo , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Proteína Fosfatasa 2C , Estructura Terciaria de Proteína , Subunidades de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad , Especificidad por Sustrato
13.
J Mol Biol ; 352(1): 105-16, 2005 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-16055151

RESUMEN

Pteridine reductase (PTR1) is an NADPH-dependent short-chain reductase found in parasitic trypanosomatid protozoans. The enzyme participates in the salvage of pterins and represents a target for the development of improved therapies for infections caused by these parasites. A series of crystallographic analyses of Leishmania major PTR1 are reported. Structures of the enzyme in a binary complex with the cofactor NADPH, and ternary complexes with cofactor and biopterin, 5,6-dihydrobiopterin, and 5,6,7,8-tetrahydrobiopterin reveal that PTR1 does not undergo any major conformational changes to accomplish binding and processing of substrates, and confirm that these molecules bind in a single orientation at the catalytic center suitable for two distinct reductions. Ternary complexes with cofactor and CB3717 and trimethoprim (TOP), potent inhibitors of thymidylate synthase and dihydrofolate reductase, respectively, have been characterized. The structure with CB3717 reveals that the quinazoline moiety binds in similar fashion to the pterin substrates/products and dominates interactions with the enzyme. In the complex with TOP, steric restrictions enforced on the trimethoxyphenyl substituent prevent the 2,4-diaminopyrimidine moiety from adopting the pterin mode of binding observed in dihydrofolate reductase, and explain the inhibition properties of a range of pyrimidine derivates. The molecular detail provided by these complex structures identifies the important interactions necessary to assist the structure-based development of novel enzyme inhibitors of potential therapeutic value.


Asunto(s)
Leishmania major/enzimología , Oxidorreductasas/química , Estructura Cuaternaria de Proteína , Animales , Sitios de Unión , Biopterinas/química , Biopterinas/metabolismo , Cristalografía por Rayos X , Antagonistas del Ácido Fólico/metabolismo , Humanos , Enlace de Hidrógeno , Ligandos , Sustancias Macromoleculares , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Oxidorreductasas/antagonistas & inhibidores , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Unión Proteica , Trimetoprim/metabolismo
14.
Structure ; 12(2): 215-26, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14962382

RESUMEN

LY333531, BIM-1, BIM-2, BIM-3, and BIM-8 are bisindolyl maleimide-based, nanomolar protein kinase C inhibitors. LY333531, a PKCbeta-specific inhibitor, is in clinical trials against diabetes and cardiac ventricular hypertrophy complications. Specificity analysis with a panel of 29 protein kinases reveals that these bisindolyl maleimide inhibitors also inhibit PDK1, a key kinase from the insulin signaling pathway, albeit in the lower microM range. To understand the molecular basis of inhibition, the PDK1 kinase domain was cocrystallized with these bisindolyl maleimide inhibitors. The inhibitor complexes represent the first structural description of this class of compounds, revealing their unusual nonplanar conformation within the ATP binding site and also explaining the higher inhibitory potential of LY33331 compared to the BIM compounds toward PDK1. A combination of site-directed mutagenesis and essential dynamics analysis gives further insight into PDK1 and also PKC inhibition by these compounds, and may aid inhibitor design.


Asunto(s)
Indoles/farmacología , Maleimidas/farmacología , Modelos Moleculares , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas Dependientes de 3-Fosfoinosítido , Sitios de Unión , Cristalografía por Rayos X , Inhibidores Enzimáticos/farmacología , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Estructura Terciaria de Proteína , Transducción de Señal
15.
J Mol Biol ; 326(3): 761-7, 2003 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-12581638

RESUMEN

ModE is a bacterial transcriptional regulator that orchestrates many aspects of molybdenum metabolism by binding to specific DNA sequences in a molybdate-dependent fashion. We present the crystal structure of Escherichia coli ModE in complex with molybdate, which was determined at 2.75A from a merohedrally twinned crystal (twin fraction approximately 0.30) with space group P4(3). We now have structures of ModE in both its "switched on" (ligand-bound) and "switched off" (apo) states. Comparison with the apo structure shows that ligand binding leads to extensive conformational changes not only in the molybdate-binding domain, but also in the DNA-binding domain. The most obvious difference is the loss of the pronounced asymmetry between the two chains of the ModE dimer, which had been a characteristic property of the apo structure. Another major change concerns the relative orientation of the two DNA-interacting winged helix-turn-helix motifs. Manual docking of an idealized DNA structure suggests that this conformational change should improve DNA binding of the activated molybdate-bound ModE.


Asunto(s)
Proteínas Bacterianas , ADN/metabolismo , Proteínas de Escherichia coli , Oxígeno/metabolismo , Factores de Transcripción/química , Secuencia de Aminoácidos , Aniones/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Factores de Transcripción/metabolismo
16.
Open Biol ; 3(9): 130022, 2013 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-24026536

RESUMEN

The fungal cell possesses an essential carbohydrate cell wall. The outer layer, mannan, is formed by mannoproteins carrying highly mannosylated O- and N-linked glycans. Yeast mannan biosynthesis is initiated by a Golgi-located complex (M-Pol I) of two GT-62 mannosyltransferases, Mnn9p and Van1p, that are conserved in fungal pathogens. Saccharomyces cerevisiae and Candida albicans mnn9 knockouts show an aberrant cell wall and increased antibiotic sensitivity, suggesting the enzyme is a potential drug target. Here, we present the structure of ScMnn9 in complex with GDP and Mn(2+), defining the fold and catalytic machinery of the GT-62 family. Compared with distantly related GT-78/GT-15 enzymes, ScMnn9 carries an unusual extension. Using a novel enzyme assay and site-directed mutagenesis, we identify conserved amino acids essential for ScMnn9 'priming' α-1,6-mannosyltransferase activity. Strikingly, both the presence of the ScMnn9 protein and its product, but not ScMnn9 catalytic activity, are required to activate subsequent ScVan1 processive α-1,6-mannosyltransferase activity in the M-Pol I complex. These results reveal the molecular basis of mannan synthesis and will aid development of inhibitors targeting this process.


Asunto(s)
Mananos/metabolismo , Manosiltransferasas/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Regulación Alostérica , Secuencia de Aminoácidos , Candida albicans/enzimología , Cristalografía por Rayos X , Guanosina Difosfato/metabolismo , Manosiltransferasas/química , Glicoproteínas de Membrana/química , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química
17.
Open Biol ; 3(10): 130021, 2013 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-24088714

RESUMEN

The dynamic modification of proteins by O-linked N-acetylglucosamine (O-GlcNAc) is an essential posttranslational modification present in higher eukaryotes. Removal of O-GlcNAc is catalysed by O-GlcNAcase, a multi-domain enzyme that has been reported to be bifunctional, possessing both glycoside hydrolase and histone acetyltransferase (AT) activity. Insights into the mechanism, protein substrate recognition and inhibition of the hydrolase domain of human OGA (hOGA) have been obtained via the use of the structures of bacterial homologues. However, the molecular basis of AT activity of OGA, which has only been reported in vitro, is not presently understood. Here, we describe the crystal structure of a putative acetyltransferase (OgpAT) that we identified in the genome of the marine bacterium Oceanicola granulosus, showing homology to the hOGA C-terminal AT domain (hOGA-AT). The structure of OgpAT in complex with acetyl coenzyme A (AcCoA) reveals that, by homology modelling, hOGA-AT adopts a variant AT fold with a unique loop creating a deep tunnel. The structures, together with mutagenesis and surface plasmon resonance data, reveal that while the bacterial OgpAT binds AcCoA, the hOGA-AT does not, as explained by the lack of key residues normally required to bind AcCoA. Thus, the C-terminal domain of hOGA is a catalytically incompetent 'pseudo'-AT.


Asunto(s)
Acetilglucosamina/metabolismo , Histona Acetiltransferasas/química , Histona Acetiltransferasas/genética , Rhodobacteraceae/enzimología , beta-N-Acetilhexosaminidasas/química , Acetilcoenzima A/química , Acetilcoenzima A/metabolismo , Acetilglucosamina/química , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Histona Acetiltransferasas/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Enzimas Multifuncionales/química , Enzimas Multifuncionales/genética , Enzimas Multifuncionales/metabolismo , Operón , Unión Proteica , Pliegue de Proteína , Procesamiento Proteico-Postraduccional , Estructura Secundaria de Proteína , Rhodobacteraceae/genética , Alineación de Secuencia , Especificidad por Sustrato , Resonancia por Plasmón de Superficie , beta-N-Acetilhexosaminidasas/genética , beta-N-Acetilhexosaminidasas/metabolismo
18.
ACS Med Chem Lett ; 2(6): 428-32, 2011 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-24900325

RESUMEN

Chitinases of the GH18 family play important roles in a variety of pathogenic organisms and have also been shown to be involved in human asthma progression, making these enzymes potential drug targets. While a number of potent GH18 chitinase inhibitors have been described, in general, these compounds suffer from limited synthetic accessibility or unfavorable medicinal-chemical properties, making them poor starting points for the development of chitinase-targeted drugs. Exploiting available structural data, we have rationally designed bisdionin C, a submicromolar inhibitor of GH18 enzymes, that possesses desirable druglike properties and tractable chemical synthesis. A crystallographic structure of a chitinase-bisdionin C complex shows the two aromatic systems of the ligand interacting with two conserved tryptophan residues exposed in the active site cleft of the enzyme, while at the same time forming extensive hydrogen-bonding interactions with the catalytic machinery. The observed mode of binding, together with inhibition data, suggests that bisdionin C presents an attractive starting point for the development of specific inhibitors of bacterial-type, but not plant-type, GH 18 chitinases.

19.
Chem Biol ; 17(12): 1275-81, 2010 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-21168763

RESUMEN

Natural products are often large, synthetically intractable molecules, yet frequently offer surprising inroads into previously unexplored chemical space for enzyme inhibitors. Argifin is a cyclic pentapeptide that was originally isolated as a fungal natural product. It competitively inhibits family 18 chitinases by mimicking the chitooligosaccharide substrate of these enzymes. Interestingly, argifin is a nanomolar inhibitor of the bacterial-type subfamily of fungal chitinases that possess an extensive chitin-binding groove, but does not inhibit the much smaller, plant-type enzymes from the same family that are involved in fungal cell division and are thought to be potential drug targets. Here we show that a small, highly efficient, argifin-derived, nine-atom fragment is a micromolar inhibitor of the plant-type chitinase ChiA1 from the opportunistic pathogen Aspergillus fumigatus. Evaluation of the binding mode with the first crystal structure of an A. fumigatus plant-type chitinase reveals that the compound binds the catalytic machinery in the same manner as observed for argifin with the bacterial-type chitinases. The structure of the complex was used to guide synthesis of derivatives to explore a pocket near the catalytic machinery. This work provides synthetically tractable plant-type family 18 chitinase inhibitors from the repurposing of a natural product.


Asunto(s)
Productos Biológicos/química , Quitinasas/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Péptidos Cíclicos/química , Aspergillus fumigatus/efectos de los fármacos , Sitios de Unión , Productos Biológicos/farmacología , Dominio Catalítico , Quitinasas/metabolismo , Cristalografía por Rayos X , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/farmacología , Hongos/enzimología , Péptidos Cíclicos/farmacología , Unión Proteica
20.
J Biol Chem ; 284(13): 8461-9, 2009 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-19097997

RESUMEN

Yeast cell wall remodeling is controlled by the equilibrium between glycoside hydrolases, glycosyltransferases, and transglycosylases. Family 72 glycoside hydrolases (GH72) are ubiquitous in fungal organisms and are known to possess significant transglycosylase activity, producing elongated beta(1-3) glucan chains. However, the molecular mechanisms that control the balance between hydrolysis and transglycosylation in these enzymes are not understood. Here we present the first crystal structure of a glucan transglycosylase, Saccharomyces cerevisiae Gas2 (ScGas2), revealing a multidomain fold, with a (betaalpha)(8) catalytic core and a separate glucan binding domain with an elongated, conserved glucan binding groove. Structures of ScGas2 complexes with different beta-glucan substrate/product oligosaccharides provide "snapshots" of substrate binding and hydrolysis/transglycosylation giving the first insights into the mechanisms these enzymes employ to drive beta(1-3) glucan elongation. Together with mutagenesis and analysis of reaction products, the structures suggest a "base occlusion" mechanism through which these enzymes protect the covalent protein-enzyme intermediate from a water nucleophile, thus controlling the balance between hydrolysis and transglycosylation and driving the elongation of beta(1-3) glucan chains in the yeast cell wall.


Asunto(s)
Pared Celular/enzimología , Glucano Endo-1,3-beta-D-Glucosidasa/química , Glucanos/química , Pliegue de Proteína , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Cristalografía por Rayos X , Glucano Endo-1,3-beta-D-Glucosidasa/metabolismo , Glucanos/metabolismo , Estructura Terciaria de Proteína/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA