Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
PLoS Pathog ; 9(1): e1003108, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23300457

RESUMEN

The biosynthesis of membrane lipids is an essential pathway for virtually all bacteria. Despite its potential importance for the development of novel antibiotics, little is known about the underlying signaling mechanisms that allow bacteria to control their membrane lipid composition within narrow limits. Recent studies disclosed an elaborate feed-forward system that senses the levels of malonyl-CoA and modulates the transcription of genes that mediate fatty acid and phospholipid synthesis in many Gram-positive bacteria including several human pathogens. A key component of this network is FapR, a transcriptional regulator that binds malonyl-CoA, but whose mode of action remains enigmatic. We report here the crystal structures of FapR from Staphylococcus aureus (SaFapR) in three relevant states of its regulation cycle. The repressor-DNA complex reveals that the operator binds two SaFapR homodimers with different affinities, involving sequence-specific contacts from the helix-turn-helix motifs to the major and minor grooves of DNA. In contrast with the elongated conformation observed for the DNA-bound FapR homodimer, binding of malonyl-CoA stabilizes a different, more compact, quaternary arrangement of the repressor, in which the two DNA-binding domains are attached to either side of the central thioesterase-like domain, resulting in a non-productive overall conformation that precludes DNA binding. The structural transition between the DNA-bound and malonyl-CoA-bound states of SaFapR involves substantial changes and large (>30 Å) inter-domain movements; however, both conformational states can be populated by the ligand-free repressor species, as confirmed by the structure of SaFapR in two distinct crystal forms. Disruption of the ability of SaFapR to monitor malonyl-CoA compromises cell growth, revealing the essentiality of membrane lipid homeostasis for S. aureus survival and uncovering novel opportunities for the development of antibiotics against this major human pathogen.


Asunto(s)
Malonil Coenzima A/metabolismo , Lípidos de la Membrana/genética , Staphylococcus aureus/metabolismo , Factores de Transcripción/ultraestructura , Transcripción Genética , Antibacterianos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proliferación Celular , Cristalografía por Rayos X , Proteínas de Unión al ADN , Regulación Bacteriana de la Expresión Génica , Secuencias Hélice-Giro-Hélice/genética , Lípidos de la Membrana/biosíntesis , Conformación Proteica , Estructura Terciaria de Proteína , Transducción de Señal , Infecciones Estafilocócicas , Staphylococcus aureus/genética , Factores de Transcripción/metabolismo
2.
J Biol Chem ; 287(29): 24649-61, 2012 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-22637481

RESUMEN

Considerable progress has been made in recent years in our understanding of the structural basis of glycosyl transfer. Yet the nature and relevance of the conformational changes associated with substrate recognition and catalysis remain poorly understood. We have focused on the glucosyl-3-phosphoglycerate synthase (GpgS), a "retaining" enzyme, that initiates the biosynthetic pathway of methylglucose lipopolysaccharides in mycobacteria. Evidence is provided that GpgS displays an unusually broad metal ion specificity for a GT-A enzyme, with Mg(2+), Mn(2+), Ca(2+), Co(2+), and Fe(2+) assisting catalysis. In the crystal structure of the apo-form of GpgS, we have observed that a flexible loop adopts a double conformation L(A) and L(I) in the active site of both monomers of the protein dimer. Notably, the L(A) loop geometry corresponds to an active conformation and is conserved in two other relevant states of the enzyme, namely the GpgS·metal·nucleotide sugar donor and the GpgS·metal·nucleotide·acceptor-bound complexes, indicating that GpgS is intrinsically in a catalytically active conformation. The crystal structure of GpgS in the presence of Mn(2+)·UDP·phosphoglyceric acid revealed an alternate conformation for the nucleotide sugar ß-phosphate, which likely occurs upon sugar transfer. Structural, biochemical, and biophysical data point to a crucial role of the ß-phosphate in donor and acceptor substrate binding and catalysis. Altogether, our experimental data suggest a model wherein the catalytic site is essentially preformed, with a few conformational changes of lateral chain residues as the protein proceeds along the catalytic cycle. This model of action may be applicable to a broad range of GT-A glycosyltransferases.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Glucosiltransferasas/química , Glucosiltransferasas/metabolismo , Mycobacterium/enzimología , Cristalografía por Rayos X , Modelos Biológicos , Polisacáridos Bacterianos/metabolismo
3.
Nat Chem Biol ; 5(10): 758-64, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19718043

RESUMEN

Protein phosphorylation transduces a large set of intracellular signals. One mechanism by which phosphorylation mediates signal transduction is by prompting conformational changes in the target protein or interacting proteins. Previous work described an allosteric site mediating phosphorylation-dependent activation of AGC kinases. The AGC kinase PDK1 is activated by the docking of a phosphorylated motif from substrates. Here we present the crystallography of PDK1 bound to a rationally developed low-molecular-weight activator and describe the conformational changes induced by small compounds in the crystal and in solution using a fluorescence-based assay and deuterium exchange experiments. Our results indicate that the binding of the compound produces local changes at the target site, the PIF binding pocket, and also allosteric changes at the ATP binding site and the activation loop. Altogether, we present molecular details of the allosteric changes induced by small compounds that trigger the activation of PDK1 through mimicry of phosphorylation-dependent conformational changes.


Asunto(s)
Fosfopéptidos/farmacología , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas Dependientes de 3-Fosfoinosítido , Regulación Alostérica , Sitio Alostérico , Línea Celular , Cristalografía por Rayos X , Activación Enzimática , Humanos , Modelos Moleculares , Peso Molecular , Fosforilación , Conformación Proteica , Proteínas Serina-Treonina Quinasas/genética , Especificidad por Sustrato
4.
Biochemistry ; 49(14): 3161-7, 2010 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-20201588

RESUMEN

The FapR protein of Bacillus subtilis has been shown to play an important role in membrane lipid homeostasis. FapR acts as a repressor of many genes involved in fatty acid and phospholipid metabolism (the fap regulon). FapR binding to DNA is antagonized by malonyl-CoA, and thus FapR acts as a sensor of the status of fatty acid biosynthesis. However, malonyl-CoA is utilized for fatty acid synthesis only following its conversion to malonyl-ACP, which plays a central role in the initiation and elongation cycles carried out by the type II fatty acid synthase. Using in vitro transcription studies and isothermal titration calorimetry, we show here that malonyl-ACP binds FapR, disrupting the repressor-operator complex with an affinity similar to that of its precursor malonyl-CoA. NMR experiments reveal that there is no protein-protein recognition between ACP and FapR. These findings are consistent with the crystal structure of malonyl-ACP, which shows that the malonyl-phosphopantetheine moiety protrudes away from the protein core and thus can act as an effector ligand. Therefore, FapR regulates the expression of the fap regulon in response to the composition of the malonyl-phosphopantetheine pool. This mechanism ensures that fatty acid biosynthesis in B. subtilis is finely regulated at the transcriptional level by sensing the concentrations of the two first intermediates (malonyl-CoA and malonyl-ACP) in order to balance the production of membrane phospholipids.


Asunto(s)
Proteína Transportadora de Acilo/química , Ácidos Grasos/biosíntesis , Proteína Transportadora de Acilo/genética , Bacillus subtilis/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Malonil Coenzima A/química , Modelos Moleculares , Regiones Promotoras Genéticas , Unión Proteica , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Represoras/química , Proteínas Represoras/genética , Transcripción Genética
5.
Proc Natl Acad Sci U S A ; 104(46): 17983-8, 2007 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-17984049

RESUMEN

We engineered a class of proteins that binds selected polypeptides with high specificity and affinity. Use of the protein scaffold of Sac7d, belonging to a protein family that binds various ligands, overcomes limitations inherent in the use of antibodies as intracellular inhibitors: it lacks disulfide bridges, is small and stable, and can be produced in large amounts. An in vitro combinatorial/selection approach generated specific, high-affinity (up to 140 pM) binders against bacterial outer membrane secretin PulD. When exported to the Escherichia coli periplasm, they inhibited PulD oligomerization, thereby blocking the type II secretion pathway of which PulD is part. Thus, high-affinity inhibitors of protein function can be derived from Sac7d and can be exported to, and function in, a cell compartment other than that in which they are produced.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/antagonistas & inhibidores , Proteínas de Unión al ADN/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Unión al ADN/química , Ensayo de Inmunoadsorción Enzimática , Escherichia coli/metabolismo , Modelos Moleculares , Reacción en Cadena de la Polimerasa , Conformación Proteica , Radioinmunoensayo , Resonancia por Plasmón de Superficie
6.
J Bacteriol ; 191(24): 7531-7, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19820093

RESUMEN

The TetR-like transcriptional repressor LfrR controls the expression of the gene encoding the Mycobacterium smegmatis efflux pump LfrA, which actively extrudes fluoroquinolones, cationic dyes, and anthracyclines from the cell and promotes intrinsic antibiotic resistance. The crystal structure of the apoprotein form of the repressor reveals a structurally asymmetric homodimer exhibiting local unfolding and a blocked drug-binding site, emphasizing the significant conformational plasticity of the protein necessary for DNA and multidrug recognition. Crystallographic and calorimetric studies of LfrR-drug complexes further confirm the intrinsic flexibility of the homodimer, which provides a dynamic mechanism to broaden multidrug binding specificity and may be a general property of transcriptional repressors regulating microbial efflux pump expression.


Asunto(s)
Antibacterianos/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Mycobacterium smegmatis/química , Mycobacterium smegmatis/metabolismo , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Antiportadores/biosíntesis , Proteínas Bacterianas/biosíntesis , Cristalografía por Rayos X , ADN Bacteriano/metabolismo , Dimerización , Humanos , Modelos Moleculares , Unión Proteica , Estructura Cuaternaria de Proteína
7.
Protein Sci ; 16(9): 1896-904, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17660248

RESUMEN

Mycobacterium leprae protein ML2640c belongs to a large family of conserved hypothetical proteins predominantly found in mycobacteria, some of them predicted as putative S-adenosylmethionine (AdoMet)-dependent methyltransferases (MTase). As part of a Structural Genomics initiative on conserved hypothetical proteins in pathogenic mycobacteria, we have determined the structure of ML2640c in two distinct crystal forms. As expected, ML2640c has a typical MTase core domain and binds the methyl donor substrate AdoMet in a manner consistent with other known members of this structural family. The putative acceptor substrate-binding site of ML2640c is a large internal cavity, mostly lined by aromatic and aliphatic side-chain residues, suggesting that a lipid-like molecule might be targeted for catalysis. A flap segment (residues 222-256), which isolates the binding site from the bulk solvent and is highly mobile in the crystal structures, could serve as a gateway to allow substrate entry and product release. The multiple sequence alignment of ML2640c-like proteins revealed that the central alpha/beta core and the AdoMet-binding site are very well conserved within the family. However, the amino acid positions defining the binding site for the acceptor substrate display a higher variability, suggestive of distinct acceptor substrate specificities. The ML2640c crystal structures offer the first structural glimpses at this important family of mycobacterial proteins and lend strong support to their functional assignment as AdoMet-dependent methyltransferases.


Asunto(s)
Metiltransferasas/química , Mycobacteriaceae/enzimología , Mycobacterium leprae/enzimología , S-Adenosilmetionina/química , Secuencia de Aminoácidos , Sitios de Unión , Biología Computacional/métodos , Cristalografía por Rayos X , Bases de Datos de Proteínas , Metiltransferasas/genética , Metiltransferasas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mycobacteriaceae/genética , Mycobacterium leprae/genética , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Electricidad Estática , Especificidad por Sustrato
8.
J Mol Biol ; 352(5): 1044-59, 2005 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-16140325

RESUMEN

Guanosine monophosphate kinases (GMPKs), which catalyze the phosphorylation of GMP and dGMP to their diphosphate form, have been characterized as monomeric enzymes in eukaryotes and prokaryotes. Here, we report that GMPK from Escherichia coli (ecGMPK) assembles in solution and in the crystal as several different oligomers. Thermodynamic analysis of ecGMPK using differential scanning calorimetry shows that the enzyme is in equilibrium between a dimer and higher order oligomers, whose relative amounts depend on protein concentration, ionic strength, and the presence of ATP. Crystallographic structures of ecGMPK in the apo, GMP and GDP-bound forms were solved at 3.2A, 2.9A and 2.4A resolution, respectively. ecGMPK forms a hexamer with D3 symmetry in all crystal forms, in which the two nucleotide-binding domains are able to undergo closure comparable to that of monomeric GMPKs. The 2-fold and 3-fold interfaces involve a 20-residue C-terminal extension and a sequence signature, respectively, that are missing from monomeric eukaryotic GMPKs, explaining why ecGMPK forms oligomers. These signatures are found in GMPKs from proteobacteria, some of which are human pathogens. GMPKs from these bacteria are thus likely to form the same quaternary structures. The shift of the thermodynamic equilibrium towards the dimer at low ecGMPK concentration together with the observation that inter-subunit interactions partially occlude the ATP-binding site in the hexameric structure suggest that the dimer may be the active species at physiological enzyme concentration.


Asunto(s)
Escherichia coli/enzimología , Nucleósido-Fosfato Quinasa/química , Nucleósido-Fosfato Quinasa/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Calorimetría , Cristalografía por Rayos X , Guanosina Monofosfato/metabolismo , Guanilato-Quinasas , Calor , Humanos , Datos de Secuencia Molecular , Nucleósido-Fosfato Quinasa/genética , Pliegue de Proteína , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia
9.
Protein Sci ; 13(5): 1295-303, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15075407

RESUMEN

We identified in Salmonella enterica serovar Typhi a cluster of four genes encoding a deoxyribokinase (DeoK), a putative permease (DeoP), a repressor (DeoQ), and an open reading frame encoding a 337 amino acid residues protein of unknown function. We show that the latter protein, called DeoM, is a hexamer whose synthesis is increased by a factor over 5 after induction with deoxyribose. The CD spectrum of the purified recombinant protein indicated a dominant contribution of betatype secondary structure and a small content of alpha-helix. Temperature and guanidinium hydrochloride induced denaturation of DeoM indicated that the hexamer dissociation and monomer unfolding are coupled processes. DeoM exhibits 12.5% and 15% sequence identity with galactose mutarotase from Lactococcus lactis and respectively Escherichia coli, which suggested that these three proteins share similar functions. Polarimetric experiments demonstrated that DeoM is a mutarotase with high specificity for deoxyribose. Site-directed mutagenesis of His183 in DeoM, corresponding to a catalytically active residue in GalM, yielded an almost inactive deoxyribose mutarotase. DeoM was crystallized and diffraction data collected for two crystal systems, confirmed its hexameric state. The possible role of the protein and of the entire gene cluster is discussed in connection with the energy metabolism of S. enterica under particular growth conditions.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Carbohidrato Epimerasas/química , Carbohidrato Epimerasas/genética , Desoxirribosa/metabolismo , Salmonella enterica/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/aislamiento & purificación , Carbohidrato Epimerasas/aislamiento & purificación , Dicroismo Circular , Clonación Molecular , Cristalización , Cristalografía por Rayos X , Desoxirribosa/química , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Sistemas de Lectura Abierta/genética , Salmonella enterica/genética , Alineación de Secuencia , Especificidad por Sustrato
10.
Protein Sci ; 11(11): 2551-60, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12381839

RESUMEN

Structural genomics is a new approach in functional assignment of proteins identified via whole-genome sequencing programs. Its rationale is that nonhomologous proteins performing similar or related biological functions might have similar tertiary structure. We used dye pseudoaffinity chromatography, two-dimensional gel electrophoresis, and mass spectrometry to identify two novel Escherichia coli nucleotide-binding proteins, YnaF and YajQ. YnaF exhibited significant sequence identity with MJ0577, an ATP-binding protein from a hyperthermophile (Methanococcus jannaschii), and with UspA, a protein from Haemophilus influenzae that belongs to the Universal Stress Protein family. YnaF conserves the ATP-binding site and the dimeric structure observed in the crystal of MJ0577. The protein YajQ, present in many bacterial genomes, is missing in eukaryotes. In the absence of significant similarities of YajQ to any solved structure, we determined its structural and ligand-binding properties by NMR and isothermal titration calorimetry. We demonstrate that YajQ is composed of two domains, each centered on a beta-sheet, that are connected by two helical segments. NMR studies, corroborated with local sequence conservation among YajQ homologs in various bacteria, indicate that one of the beta-sheets is mostly involved in biological activity.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Calorimetría , Dicroismo Circular , Dimerización , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/aislamiento & purificación , Ligandos , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Nucleótidos/metabolismo , Unión Proteica , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteoma , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/aislamiento & purificación , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia
11.
J Biol Chem ; 284(32): 21613-25, 2009 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-19520856

RESUMEN

Phosphatidyl-myo-inositol mannosyltransferase A (PimA) is an essential glycosyltransferase (GT) involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIMs), which are key components of the mycobacterial cell envelope. PimA is the paradigm of a large family of peripheral membrane-binding GTs for which the molecular mechanism of substrate/membrane recognition and catalysis is still unknown. Strong evidence is provided showing that PimA undergoes significant conformational changes upon substrate binding. Specifically, the binding of the donor GDP-Man triggered an important interdomain rearrangement that stabilized the enzyme and generated the binding site for the acceptor substrate, phosphatidyl-myo-inositol (PI). The interaction of PimA with the beta-phosphate of GDP-Man was essential for this conformational change to occur. In contrast, binding of PI had the opposite effect, inducing the formation of a more relaxed complex with PimA. Interestingly, GDP-Man stabilized and PI destabilized PimA by a similar enthalpic amount, suggesting that they formed or disrupted an equivalent number of interactions within the PimA complexes. Furthermore, molecular docking and site-directed mutagenesis experiments provided novel insights into the architecture of the myo-inositol 1-phosphate binding site and the involvement of an essential amphiphatic alpha-helix in membrane binding. Altogether, our experimental data support a model wherein the flexibility and conformational transitions confer the adaptability of PimA to the donor and acceptor substrates, which seems to be of importance during catalysis. The proposed mechanism has implications for the comprehension of the peripheral membrane-binding GTs at the molecular level.


Asunto(s)
Proteínas Bacterianas/química , Manosiltransferasas/biosíntesis , Mycobacterium smegmatis/metabolismo , Proteínas Bacterianas/biosíntesis , Calorimetría/métodos , Catálisis , Membrana Celular/metabolismo , Dicroismo Circular/métodos , Guanosina Difosfato/química , Manosiltransferasas/química , Manosiltransferasas/metabolismo , Modelos Biológicos , Modelos Químicos , Conformación Molecular , Desnaturalización Proteica , Estructura Terciaria de Proteína , Especificidad por Sustrato , Termodinámica
12.
J Med Chem ; 52(15): 4683-93, 2009 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-19606904

RESUMEN

The modulation of protein kinase activities by low molecular weight compounds is a major goal of current pharmaceutical developments. In this line, important efforts are directed to the development of drugs targeting the conserved ATP binding site. However, there is very little experience on targeting allosteric, regulatory sites, different from the ATP binding site, in protein kinases. Here we describe the synthesis, cell-free activation potency, and calorimetric binding analysis of 3,5-diphenylpent-2-enoic acids and derivatives as allosteric modulators of the phosphoinositide-dependent kinase-1 (PDK1) catalytic activity. Our SAR results combined with thermodynamic binding analyses revealed both favorable binding enthalpy and entropy and confirmed the PIF-binding pocket of PDK1 as a druggable site. In conclusion, we defined the minimal structural requirements for compounds to bind to the PIF-binding pocket and to act as allosteric modulators and identified two new lead structures (12Z and 13Z) with predominating binding enthalpy.


Asunto(s)
Ácidos Grasos Monoinsaturados/síntesis química , Proteínas Serina-Treonina Quinasas/efectos de los fármacos , Termodinámica , Sitio Alostérico , Calorimetría , Entropía , Ácidos Grasos Monoinsaturados/química , Ácidos Grasos Monoinsaturados/metabolismo , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Relación Estructura-Actividad
13.
J Mol Biol ; 374(4): 890-8, 2007 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-17961594

RESUMEN

Phospho-Ser/Thr protein phosphatases (PPs) are dinuclear metalloenzymes classed into two large families, PPP and PPM, on the basis of sequence similarity and metal ion dependence. The archetype of the PPM family is the alpha isoform of human PP2C (PP2Calpha), which folds into an alpha/beta domain similar to those of PPP enzymes. The recent structural studies of three bacterial PPM phosphatases, Mycobacterium tuberculosis MtPstP, Mycobacterium smegmatis MspP, and Streptococcus agalactiae STP, confirmed the conservation of the overall fold and dinuclear metal center in the family, but surprisingly revealed the presence of a third conserved metal-binding site in the active site. To gain insight into the roles of the three-metal center in bacterial enzymes, we report structural and metal-binding studies of MtPstP and MspP. The structure of MtPstP in a new trigonal crystal form revealed a fully active enzyme with the canonical dinuclear metal center but without the third metal ion bound to the catalytic site. The absence of metal correlates with a partially unstructured flap segment, indicating that the third manganese ion contributes to reposition the flap, but is dispensable for catalysis. Studies of metal binding to MspP using isothermal titration calorimetry revealed that the three Mn(2+)-binding sites display distinct affinities, with dissociation constants in the nano- and micromolar range for the two catalytic metal ions and a significantly lower affinity for the third metal-binding site. In agreement, the structure of inactive MspP at acidic pH was determined at atomic resolution and shown to lack the third metal ion in the active site. Structural comparisons of all bacterial phosphatases revealed positional variations in the third metal-binding site that are correlated with the presence of bound substrate and the conformation of the flap segment, supporting a role of this metal ion in assisting enzyme-substrate interactions.


Asunto(s)
Proteínas Bacterianas/química , Modelos Moleculares , Mycobacterium smegmatis/enzimología , Mycobacterium tuberculosis/enzimología , Fosfoproteínas Fosfatasas/química , Monoéster Fosfórico Hidrolasas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Concentración de Iones de Hidrógeno , Manganeso/química , Monoéster Fosfórico Hidrolasas/química , Conformación Proteica
14.
J Biol Chem ; 282(28): 20705-14, 2007 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-17510062

RESUMEN

Mycobacterial phosphatidylinositol mannosides (PIMs) and metabolically derived cell wall lipoglycans play important roles in host-pathogen interactions, but their biosynthetic pathways are poorly understood. Here we focus on Mycobacterium smegmatis PimA, an essential enzyme responsible for the initial mannosylation of phosphatidylinositol. The structure of PimA in complex with GDP-mannose shows the two-domain organization and the catalytic machinery typical of GT-B glycosyltransferases. PimA is an amphitrophic enzyme that binds mono-disperse phosphatidylinositol, but its transferase activity is stimulated by high concentrations of non-substrate anionic surfactants, indicating that the early stages of PIM biosynthesis involve lipid-water interfacial catalysis. Based on structural, calorimetric, and mutagenesis studies, we propose a model wherein PimA attaches to the membrane through its N-terminal domain, and this association leads to enzyme activation. Our results reveal a novel mode of phosphatidylinositol recognition and provide a template for the development of potential antimycobacterial compounds.


Asunto(s)
Proteínas Bacterianas/química , Manosiltransferasas/química , Proteínas de la Membrana/química , Modelos Moleculares , Mycobacterium smegmatis/enzimología , Fosfatidilinositoles/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Catálisis , Manosiltransferasas/genética , Manosiltransferasas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutagénesis , Mycobacterium smegmatis/genética , Fosfatidilinositoles/genética , Fosfatidilinositoles/metabolismo , Estructura Terciaria de Proteína/genética
15.
EMBO J ; 25(17): 4074-83, 2006 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-16932747

RESUMEN

Malonyl-CoA is an essential intermediate in fatty acid synthesis in all living cells. Here we demonstrate a new role for this molecule as a global regulator of lipid homeostasis in Gram-positive bacteria. Using in vitro transcription and binding studies, we demonstrate that malonyl-CoA is a direct and specific inducer of Bacillus subtilis FapR, a conserved transcriptional repressor that regulates the expression of several genes involved in bacterial fatty acid and phospholipid synthesis. The crystal structure of the effector-binding domain of FapR reveals a homodimeric protein with a thioesterase-like 'hot-dog' fold. Binding of malonyl-CoA promotes a disorder-to-order transition, which transforms an open ligand-binding groove into a long tunnel occupied by the effector molecule in the complex. This ligand-induced modification propagates to the helix-turn-helix motifs, impairing their productive association for DNA binding. Structure-based mutations that disrupt the FapR-malonyl-CoA interaction prevent DNA-binding regulation and result in a lethal phenotype in B. subtilis, suggesting this homeostatic signaling pathway as a promising target for novel chemotherapeutic agents against Gram-positive pathogens.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/química , Lípidos/biosíntesis , Malonil Coenzima A/química , Pliegue de Proteína , Proteínas Represoras/biosíntesis , Bacillus subtilis/genética , Bacillus subtilis/crecimiento & desarrollo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Dimerización , Malonil Coenzima A/genética , Malonil Coenzima A/metabolismo , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica , Proteínas Represoras/genética
16.
Proc Natl Acad Sci U S A ; 103(6): 1705-10, 2006 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-16446443

RESUMEN

Amino acid racemases catalyze the stereoinversion of the chiral C alpha to produce the d-enantiomers that participate in biological processes, such as cell wall construction in prokaryotes. Within this large protein family, bacterial proline racemases have been extensively studied as a model of enzymes acting with a pyridoxal-phosphate-independent mechanism. Here we report the crystal structure of the proline racemase from the human parasite Trypanosoma cruzi (TcPRACA), a secreted enzyme that triggers host B cell polyclonal activation, which prevents specific humoral immune responses and is crucial for parasite evasion and fate. The enzyme is a homodimer, with each monomer folded in two symmetric alpha/beta subunits separated by a deep crevice. The structure of TcPRACA in complex with a transition-state analog, pyrrole-2-carboxylic acid, reveals the presence of one reaction center per monomer, with two Cys residues optimally located to perform acid/base catalysis through a carbanion stabilization mechanism. Mutation of the catalytic Cys residues abolishes the enzymatic activity but preserves the mitogenic properties of the protein. In contrast, inhibitor binding promotes the closure of the interdomain crevice and completely abrogates B cell proliferation, suggesting that the mitogenic properties of TcPRACA depend on the exposure of transient epitopes in the ligand-free enzyme.


Asunto(s)
Isomerasas de Aminoácido/química , Isomerasas de Aminoácido/metabolismo , Mitógenos/metabolismo , Trypanosoma cruzi/enzimología , Isomerasas de Aminoácido/antagonistas & inhibidores , Isomerasas de Aminoácido/farmacología , Animales , Sitios de Unión , Catálisis , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Cristalografía por Rayos X , Inhibidores Enzimáticos/farmacología , Linfocitos/efectos de los fármacos , Ratones , Mitógenos/química , Mitógenos/genética , Mitógenos/farmacología , Modelos Moleculares , Estructura Cuaternaria de Proteína , Pirrolidinas/química , Termodinámica
17.
EMBO J ; 25(23): 5469-80, 2006 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-17110931

RESUMEN

Organisms rely heavily on protein phosphorylation to transduce intracellular signals. The phosphorylation of a protein often induces conformational changes, which are responsible for triggering downstream cellular events. Protein kinases are themselves frequently regulated by phosphorylation. Recently, we and others proposed the molecular mechanism by which phosphorylation at a hydrophobic motif (HM) regulates the conformation and activity of many members of the AGC group of protein kinases. Here we have developed specific, low molecular weight compounds, which target the HM/PIF-pocket and have the ability to allosterically activate phosphoinositide-dependent protein kinase 1 (PDK1) by modulating the phosphorylation-dependent conformational transition. The mechanism of action of these compounds was characterized by mutagenesis of PDK1, synthesis of compound analogs, interaction-displacement studies and isothermal titration calorimetry experiments. Our results raise the possibility of developing drugs that target the AGC kinases via a novel mode of action and may inspire future rational development of compounds with the ability to modulate phosphorylation-dependent conformational transitions in other proteins.


Asunto(s)
Acetatos/farmacología , Diseño de Fármacos , Proteínas Serina-Treonina Quinasas/efectos de los fármacos , Proteínas Quinasas Dependientes de 3-Fosfoinosítido , Acetatos/química , Regulación Alostérica , Secuencias de Aminoácidos , Sitios de Unión , Células Cultivadas , Activación Enzimática , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Peso Molecular , Mutación , Fosfopéptidos/farmacología , Fosforilación , Conformación Proteica , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética
18.
Biochemistry ; 41(7): 2115-9, 2002 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-11841201

RESUMEN

To locate the region involved in binding dockerin domains, 15 mutations were introduced across the surface of the seventh cohesin domain of the scaffolding protein CipA, which holds together the cellulosome of Clostridium thermocellum. Mutated residues were located on both faces of the nine-stranded beta-sandwich forming the cohesin domain and on the loops connecting beta-strands 4 and 5, 6 and 7, and 8 and 9. The loop region was previously proposed, on the basis of sequence comparisons, to form a contiguous "recognition strip". Individual mutants of four residues, D39, Y74, E86, and G89, formed no complexes detectable by nondenaturing gel electrophoresis after incubation with CelD664, a shortened form of endoglucanase CelD lacking the residues linking the catalytic domain with the dockerin domain. The four sensitive residues encompass a hydrophobic region on the 5-6-3-8 face of the molecule, which overlaps partially with the recognition strip and with a hydrophobic zone involved in the formation of cohesin-cohesin dimers. Isothermal titration calorimetry showed that single cohesin mutations affecting the binding of CelD664 had significant effects on the enthalpy or entropy of binding of wild-type CelD but much lesser effects on the association constant, owing to enthalpy-entropy compensation. However, the affinity for wild-type CelD of the triple mutant affecting D39, Y74, and E86 was reduced by 2 orders of magnitude, due to negative cooperativity between mutations affecting D39 + Y74 on one hand and E86 on the other hand.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Clostridium/enzimología , Clostridium/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutagénesis Sitio-Dirigida , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos/genética , Sitios de Unión/genética , Proteínas de Ciclo Celular , Celulasa/metabolismo , Proteínas Cromosómicas no Histona , Proteínas Fúngicas , Datos de Secuencia Molecular , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Mapeo Peptídico/métodos , Unión Proteica/genética , Estructura Terciaria de Proteína/genética , Cohesinas
19.
Biochemistry ; 41(7): 2106-14, 2002 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-11841200

RESUMEN

Mutagenized dockerin domains of endoglucanase CelD (type I) and of the cellulosome-integrating protein CipA (type II) were constructed by swapping residues 10 and 11 of the first or the second duplicated segment between the two polypeptides. These residues have been proposed to determine the specificity of cohesin-dockerin interactions. The dockerin domain of CelD still bound to the seventh cohesin domain of CipA (CohCip7), provided that mutagenesis occurred in one segment only. Binding was no longer detected by nondenaturing gel electrophoresis when both segments were mutagenized. The dockerin domain of CipA bound to the cohesin domain of SdbA as long as the second segment was intact. None of the mutated dockerins displayed detectable binding to the noncognate cohesin domain. Isothermal titration calorimetry showed that binding of the CelD dockerin to CohCip7 occurred with a high affinity [K(a) = (2.6 +/- 0.5) x 10(9) M(-1)] and a 1:1 stoichiometry. The reaction was weakly exothermic (DeltaHdegrees = -2.22 +/- 0.2 kcal x mol(-1)) and largely entropy driven (TDeltaSdegrees = 10.70 +/- 0.5 kcal x mol(-1)). The heat capacity change on complexation was negative (DeltaC(p) = -305 +/- 15 cal x mol(-1) x K(-1)). These values show that cohesin-dockerin binding is mainly hydrophobic. Mutations in the first or the second dockerin segment reduced or enhanced, respectively, the hydrophobic character of the interaction. Due to partial enthalpy-entropy compensation, these mutations induced only small changes in binding affinity. However, the binding affinity was strongly decreased when both segments were mutated, indicating strong negative cooperativity between the two mutated sites.


Asunto(s)
Proteínas Bacterianas/metabolismo , Celulasa/metabolismo , Clostridium/enzimología , Proteínas de la Membrana/metabolismo , Complejos Multienzimáticos/metabolismo , Proteínas Nucleares/metabolismo , Secuencias Repetitivas de Aminoácido , Secuencia de Aminoácidos , Sustitución de Aminoácidos/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Secuencia de Bases , Sitios de Unión/genética , Proteínas de Ciclo Celular , Celulasa/química , Celulasa/genética , Proteínas Cromosómicas no Histona , Clostridium/genética , Cisteína/genética , Proteínas Fúngicas , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Complejos Multienzimáticos/química , Complejos Multienzimáticos/genética , Mutagénesis Sitio-Dirigida , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Unión Proteica/genética , Estructura Terciaria de Proteína/genética , Secuencias Repetitivas de Aminoácido/genética , Termodinámica , Cohesinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA