RESUMEN
Lake Erie is a large lake straddling the border of the USA and Canada that has become increasingly eutrophic in recent years. Eutrophication is particularly focused in the shallow western basin. The western basin of Lake Erie is hydrodynamically similar to a large estuary, with riverine inputs from the Detroit and Maumee Rivers mixing together and creating gradients in chemical and physical conditions. This study was driven by two questions: (1) How does secondary production and food quality for consumers vary across this large mixing zone? and (2) Are there correlations between cyanobacterial abundance and secondary production or food quality for consumers? Measuring spatial and temporal variation in secondary production and food quality is difficult for a variety of logistical reasons, so here a common consumer approach was used. In a common consumer approach, individuals of a single species are raised under similar conditions until placed in the field across environmental gradients of interest. After some period of exposure, the response of that common consumer is measured to provide an index of spatial variation in conditions. Here, a freshwater mussel (Lampsilis siliquoidea) was deployed at 32 locations that spanned habitat types and a gradient in cyanobacterial abundance in the western basin of Lake Erie to measure spatial variation in growth (an index of secondary production) and fatty acid (FA) content (an index of food quality). We found secondary production was highest within the Maumee river mouth and lowest in the open waters of the lake. Mussel tissues in the Maumee river mouth also included more eicosapentaenoic and docosapentaenoic fatty acids (EPA and DPA, respectively), but fewer bacterial FAs, suggesting more algae at the base of the food web in the Maumee river mouth compared to open lake sites. The satellite-derived estimate of cyanobacterial abundance was not correlated to secondary production, but was positively related to EPA and DPA content in the mussels, suggesting more of these important FAs in locations with more cyanobacteria. These results suggest that growth of secondary consumers and the availability of important fatty acids in the western basin are centered on the Maumee river mouth.
Asunto(s)
Bivalvos/fisiología , Ecosistema , Lagos , Animales , Cianobacterias/fisiología , Ácidos Grasos/química , Great Lakes Region , Lípidos/química , Ríos , Factores de TiempoRESUMEN
Tissue-based next-generation sequencing (NGS) in metastatic breast cancer (mBC) is limited by the inability to noninvasively track tumor evolution. Cell-free DNA (cfDNA) NGS has made sequential testing feasible; however, the relationship between cfDNA and tissue-based testing in mBC is not well understood. Here, we evaluate concordance between tissue and cfDNA NGS relative to cfDNA sampling frequency in a large, clinically annotated mBC data set. METHODS: Tempus LENS was used to analyze deidentified records of mBC cases with Tempus xT (tissue) and xF (cfDNA) sequencing results. Then, various metrics of concordance were assessed within overlapping probe regions of the tissue and cfDNA assays (104 genes), focusing on pathogenic variants. Variant allele frequencies of discordant and concordant pathogenic variants were also compared. Analyses were stratified by mBC subtype and time between tests. RESULTS: Records from 300 paired tissue and liquid biopsies were analyzed. Median time between tissue and blood collection was 78.5 days (standard deviation = 642.99). The median number of pathogenic variants/patient was one for cfDNA and two for tissue. Across the cohort, 77.8% of pathogenic tissue variants were found in cfDNA and 75.7% of pathogenic cfDNA variants were found in tissue when tests were ≤ 7 days apart, which decreased to 50.3% and 51.8%, respectively, for > 365 days. Furthermore, the median patient-level variant concordance was 67% when tests were ≤7 days apart and 30%-37% when > 30 days. The median variant allele frequencies of discordant variants were generally lower than those of concordant variants within the same time frame. CONCLUSION: We observed high concordances between tissue and cfDNA results that generally decreased with longer durations between tests. Thus, cfDNA NGS reliably measures tissue genomics and is likely beneficial for longitudinal monitoring of molecular changes in mBC.