RESUMEN
INTRODUCTION: Marmosets have been shown to spontaneously develop pathological hallmarks of Alzheimer's disease (AD) during advanced age, including amyloid-beta plaques, positioning them as a model system to overcome the rodent-to-human translational gap for AD. However, Tau expression in the marmoset brain has been understudied. METHODS: To comprehensively investigate Tau isoform expression in marmosets, brain tissue from eight unrelated marmosets across various ages was evaluated and compared to human postmortem AD tissue. Microtubule-associated protein tau ( MAPT ) mRNA expression and splicing were confirmed by RT-PCR. Tau isoforms in the marmoset brain were examined by western blot, mass spectrometry, immunofluorescence, and immunohistochemical staining. Synaptic Tau expression was analyzed from crude synaptosome extractions. RESULTS: 3R and 4R Tau isoforms are expressed in marmoset brains at both transcript and protein levels across ages. Results from western blot analysis were confirmed by mass spectrometry, which revealed that Tau peptides in marmoset corresponded to the 3R and 4R peptides in the human AD brain. 3R Tau was primarily enriched in neonate brains, and 4R enhanced in adult and aged brains. Tau was widely distributed in neurons with localization in the soma and synaptic regions. Phosphorylation residues were observed on Thr-181, Thr-217, and Thr-231, Ser202/Thr205, Ser396/Ser404. Paired helical filament (PHF)-like aggregates were also detected in aged marmosets. DISCUSSION: Our results confirm the expression of both 3R and 4R Tau isoforms and important phosphorylation residues in the marmoset brain. These data emphasize the significance of marmosets with natural expression of AD-related hallmarks as important translational models for the study of AD.