Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Osteoarthritis Cartilage ; 32(5): 561-573, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38369276

RESUMEN

OBJECTIVE: Neutralization of Interleukin (IL)-6-signaling by antibodies is considered a promising tool for the treatment of osteoarthritis (OA). To gain further insight into this potential treatment, this study investigated the effects of IL-6-signaling and IL-6 neutralization on chondrocyte metabolism and the release of IL-6-signaling-related mediators by human chondrocytes. DESIGN: Chondrocytes were collected from 49 patients with advanced knee/hip OA or femoral neck fracture. Isolated chondrocytes were stimulated with different mediators to analyze the release of IL-6, soluble IL-6 receptor (sIL-6R) and soluble gp130 (sgp130). The effect of IL-6 and IL-6/sIL-6R complex as well as neutralization of IL-6-signaling on the metabolism was analyzed. RESULTS: OA chondrocytes showed high basal IL-6 production and release, which was strongly negatively correlated with the production of cartilage-matrix-proteins. Chondrocytes produced and released sIL-6R and sgp130. The IL-6/sIL-6R complex significantly increased nitric oxide, prostaglandin E2 and matrix metalloproteinase 1 production, decreased Pro-Collagen Type II and mitochondrial ATP production, and increased glycolysis in OA chondrocytes. Neutralization of IL-6-signaling by antibodies did not significantly affect the metabolism of OA chondrocytes, but blocking of glycoprotein 130 (gp130)-signaling by SC144 significantly reduced the basal IL-6 release. CONCLUSION: Although IL-6 trans-signaling induced by IL-6/sIL-6R complex negatively affects OA chondrocytes, antibodies against IL-6 or IL-6R did not affect chondrocyte metabolism. Since inhibition of gp130-signaling reduced the enhanced basal release of IL-6, interfering with gp130-signaling may ameliorate OA progression because high cellular release of IL-6 correlates with reduced production of cartilage-matrix-proteins.


Asunto(s)
Interleucina-6 , Humanos , Condrocitos/metabolismo , Receptor gp130 de Citocinas/metabolismo , Interleucina-6/metabolismo , Receptores de Interleucina-6/metabolismo , Transducción de Señal
2.
J Neurochem ; 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36520021

RESUMEN

Diseases of joints are among the most frequent causes of chronic pain. In the course of joint diseases, the peripheral and the central nociceptive system develop persistent hyperexcitability (peripheral and central sensitization). This review addresses the mechanisms of spinal sensitization evoked by arthritis. Electrophysiological recordings in anesthetized rats from spinal cord neurons with knee input in a model of acute arthritis showed that acute spinal sensitization is dependent on spinal glutamate receptors (AMPA, NMDA, and metabotropic glutamate receptors) and supported by spinal actions of neuropeptides such as neurokinins and CGRP, by prostaglandins, and by proinflammatory cytokines. In several chronic arthritis models (including immune-mediated arthritis and osteoarthritis) spinal glia activation was observed to be coincident with behavioral mechanical hyperalgesia which was attenuated or prevented by intrathecal application of minocycline, fluorocitrate, and pentoxyfylline. Some studies identified specific pathways of micro- and astroglia activation such as the purinoceptor- (P2 X7 -) cathepsin S/CX3 CR1 pathway, the mobility group box-1 protein (HMGB1), and toll-like receptor 4 (TLR4) activation, spinal NFκB/p65 activation and others. The spinal cytokines TNF, interleukin-6, interleukin-1ß, and others form a functional spinal network characterized by an interaction between neurons and glia cells which is required for spinal sensitization. Neutralization of spinal cytokines by intrathecal interventions attenuates mechanical hyperalgesia. This effect may in part result from local suppression of spinal sensitization and in part from efferent effects which attenuate the inflammatory process in the joint. In summary, arthritis evokes significant spinal hyperexcitability which is likely to contribute to the phenotype of arthritis pain in patients.

3.
J Neurochem ; 158(4): 898-911, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34050952

RESUMEN

Both spinal tumor necrosis factor (TNF) and interleukin-6 (IL-6) contribute to the development of "mechanical" spinal hyperexcitability in inflammatory pain states. Recently, we found that spinal sensitization by TNF was significantly reduced by blockade of spinal IL-6 signaling suggesting that IL-6 signaling is involved in spinal TNF effects. Here, we explored whether spinal interleukin-1ß (IL-1ß), also implicated in inflammatory pain, induces "mechanical" spinal hyperexcitability, and whether spinal IL-1ß effects are related to TNF and IL-6 effects. We recorded the responses of spinal cord neurons to mechanical stimulation of the knee joint in vivo and used cellular approaches on microglial and astroglial cell lines to identify interactions of IL-1ß, TNF, and IL-6. Spinal application of IL-1ß in anesthetized rats modestly enhanced responses of spinal cord neurons to innocuous and noxious mechanical joint stimulation. This effect was blocked by minocycline indicating microglia involvement, and significantly attenuated by interfering with IL-6 signaling. In the BV2 microglial cell line, IL-1ß, like TNF, enhanced the release of soluble IL-6 receptor, necessary for spinal IL-6 actions. Different to TNF, IL-1ß caused SNB-19 astrocytes to release interleukin-11. The generation of "mechanical" spinal hyperexcitability by IL-1ß was more pronounced upon spinal TNF neutralization with etanercept, suggesting that concomitant TNF limits IL-1ß effects. In BV2 cells, TNF stimulated the release of IL-1Ra, an endogenous IL-1ß antagonist. Thus, spinal IL-1ß has the potential to induce spinal hyperexcitability sharing with TNF dependency on IL-6 signaling, but TNF also limited IL-1ß effects explaining the modest effect of IL-1ß.


Asunto(s)
Interleucina-1beta/farmacología , Interleucina-6/farmacología , Neuronas/efectos de los fármacos , Médula Espinal/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Animales , Ganglios Espinales/citología , Ganglios Espinales/efectos de los fármacos , Interleucina-11/metabolismo , Articulaciones/inervación , Microglía/efectos de los fármacos , Nocicepción/efectos de los fármacos , Estimulación Física , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos
4.
J Neurochem ; 157(6): 1821-1837, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32885411

RESUMEN

Hyperalgesic priming is characterized by enhanced nociceptor sensitization by pronociceptive mediators, prototypically PGE2 . Priming has gained interest as a mechanism underlying the transition to chronic pain. Which stimuli induce priming and what cellular mechanisms are employed remains incompletely understood. In adult male rats, we present the cytokine Oncostatin M (OSM), a member of the IL-6 family, as an inducer of priming by a novel mechanism. We used a high content microscopy based approach to quantify the activation of endogenous PKA-II and ERK of thousands sensory neurons in culture. Incubation with OSM increased and prolonged ERK activation by agents that increase cAMP production such as PGE2 , forskolin, and cAMP analogs. These changes were specific to IB4/CaMKIIα positive neurons, required protein translation, and increased cAMP-to-ERK signaling. In both, control and OSM-treated neurons, cAMP/ERK signaling involved RapGEF2 and PKA but not Epac. Similar enhancement of cAMP-to-ERK signaling could be induced by GDNF, which acts mostly on IB4/CaMKIIα-positive neurons, but not by NGF, which acts mostly on IB4/CaMKIIα-negative neurons. In vitro, OSM pretreatment rendered baseline TTX-R currents ERK-dependent and switched forskolin-increased currents from partial to full ERK-dependence in small/medium sized neurons. In summary, priming induced by OSM uses a novel mechanism to enhance and prolong coupling of cAMP/PKA to ERK1/2 signaling without changing the overall pathway structure.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Hiperalgesia/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Oncostatina M/toxicidad , Animales , Antineoplásicos/toxicidad , Humanos , Hiperalgesia/inducido químicamente , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Ratones , Ratas , Ratas Sprague-Dawley
5.
Int J Mol Sci ; 22(5)2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33804447

RESUMEN

Interleukin (IL)-1ß is an important pro-inflammatory cytokine in the progression of osteoarthritis (OA), which impairs mitochondrial function and induces the production of nitric oxide (NO) in chondrocytes. The aim was to investigate if blockade of NO production prevents IL-1ß-induced mitochondrial dysfunction in chondrocytes and whether cAMP and AMP-activated protein kinase (AMPK) affects NO production and mitochondrial function. Isolated human OA chondrocytes were stimulated with IL-1ß in combination with/without forskolin, L-NIL, AMPK activator or inhibitor. The release of NO, IL-6, PGE2, MMP3, and the expression of iNOS were measured by ELISA or Western blot. Parameters of mitochondrial respiration were measured using a seahorse analyzer. IL-1ß significantly induced NO release and mitochondrial dysfunction. Inhibition of iNOS by L-NIL prevented IL-1ß-induced NO release and mitochondrial dysfunction but not IL-1ß-induced release of IL-6, PGE2, and MMP3. Enhancement of cAMP by forskolin reduced IL-1ß-induced NO release and prevented IL-1ß-induced mitochondrial impairment. Activation of AMPK increased IL-1ß-induced NO production and the negative impact of IL-1ß on mitochondrial respiration, whereas inhibition of AMPK had the opposite effects. NO is critically involved in the IL-1ß-induced impairment of mitochondrial respiration in human OA chondrocytes. Increased intracellular cAMP or inhibition of AMPK prevented both IL-1ß-induced NO release and mitochondrial dysfunction.


Asunto(s)
Condrocitos/efectos de los fármacos , Inflamación/prevención & control , Interleucina-1beta/farmacología , Mitocondrias/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Óxido Nítrico/metabolismo , Osteoartritis de la Rodilla/prevención & control , Células Cultivadas , Condrocitos/metabolismo , Condrocitos/patología , Femenino , Humanos , Inflamación/etiología , Inflamación/metabolismo , Inflamación/patología , Masculino , Persona de Mediana Edad , Mitocondrias/metabolismo , Mitocondrias/patología , FN-kappa B/genética , FN-kappa B/metabolismo , Osteoartritis de la Rodilla/inducido químicamente , Osteoartritis de la Rodilla/metabolismo , Osteoartritis de la Rodilla/patología
6.
Neuroimmunomodulation ; 25(4): 225-237, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30566959

RESUMEN

OBJECTIVES: The appearance of endogenous tyrosine hydroxylase-positive cells (TH+ cells) in collagen-induced arthritis was associated with an anti-inflammatory effect. Here we investigated putative anti-inflammatory and antinociceptive effects of the transfer of induced, bone marrow stem cell-derived TH+ cells (iTH+ cells) on murine antigen-induced arthritis (AIA). METHODS: Bone marrow-derived stem cells were differentiated into iTH+ cells. These cells were transferred to mice immunized against methylated bovine serum albumin (mBSA) 2 days before AIA was induced by injection of mBSA into one knee joint. In AIA control mice and iTH+-treated mice the severity of AIA, pain-related behavior, humoral and cellular responses, and the invasion of macrophages into the dorsal root ganglia were assessed. RESULTS: The intravenous transfer of iTH+ cells before AIA induction did not cause a sustained suppression of AIA severity but significantly reduced inflammation-evoked pain-related behavior. The iTH+ cells used for transfer exhibited enormous production of interleukin-4. A major difference between AIA control mice and iTH+-treated AIA mice was a massive invasion of the dorsal root ganglia by iNOS-negative, arginine 1-positive macrophages corresponding to an M2 phenotype. The differences in other cellular and humoral immune parameters such as release of cytokines from stimulated lymphocytes between AIA control mice and iTH+-treated mice were small. CONCLUSIONS: The transfer of iTH+ cells may cause a long-lasting reduction of arthritis-induced pain even if it does not ameliorate inflammation. The invasion of M2 macrophages into the dorsal root ganglia is likely to be an important mechanism of antinociception.


Asunto(s)
Manejo del Dolor/métodos , Dolor/enzimología , Trasplante de Células Madre/métodos , Tirosina 3-Monooxigenasa/administración & dosificación , Animales , Células Cultivadas , Femenino , Inflamación/enzimología , Inflamación/patología , Inflamación/terapia , Masculino , Ratones , Ratones Endogámicos C57BL , Dolor/patología , Manejo del Dolor/tendencias , Trasplante de Células Madre/tendencias , Resultado del Tratamiento
10.
J Neurosci ; 36(38): 9782-91, 2016 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-27656018

RESUMEN

UNLABELLED: During peripheral inflammation, both spinal TNF-α and IL-6 are released within the spinal cord and support the generation of inflammation-evoked spinal hyperexcitability. However, whether spinal TNF-α and IL-6 act independently in parallel or in a functionally dependent manner has not been investigated. In extracellular recordings from mechanonociceptive deep dorsal horn neurons of normal rats in vivo, we found that spinal application of TNF-α increased spinal neuronal responses to mechanical stimulation of knee and ankle joints. This effect was significantly attenuated by either sgp130, which blocks IL-6 trans-signaling mediated by IL-6 and its soluble receptor IL-6R (sIL-6R); by an antibody to the IL-6 receptor; or by minocycline, which inhibits the microglia. IL-6 was localized in neurons of the spinal cord and, upon peripheral noxious stimulation in the presence of spinal TNF-α, IL-6 was released spinally. Furthermore, TNF-α recruited microglial cells to provide sIL-6R, which can form complexes with IL-6. Spinal application of IL-6 plus sIL-6R, but not of IL-6 alone, enhanced spinal hyperexcitability similar to TNF-α and the inhibition of TNF-α-induced hyperexcitability by minocycline was overcome by coadministration of sIL-6R, showing that sIL-6R is required. Neither minocycline nor the TNF-α-neutralizing compound etanercept inhibited the induction of hyperexcitability by IL-6 plus sIL-6R. Together, these data show that the induction of hyperexcitability of nociceptive deep dorsal horn neurons by TNF-α largely depends on the formation of IL-6/sIL-6R complexes that are downstream of TNF-α and requires the interactions of neurons and microglia orchestrated by TNF-α. SIGNIFICANCE STATEMENT: Both spinal TNF-α and IL-6 induce a state of spinal hyperexcitability. We present the novel finding that the full effect of TNF-α on the development of spinal hyperexcitability depends on IL-6 trans-signaling acting downstream of TNF-α. IL-6 trans-signaling requires the formation of complexes of IL-6 and soluble IL-6 receptor. Spinal TNF-α furthers the release of IL-6 from neurons in the spinal cord during peripheral noxious stimulation and recruits microglial cells to provide soluble IL-6 receptor, which can form complexes with IL-6. Therefore, a specific interaction between neurons and microglia is required for the full development of TNF-α-induced hyperexcitability of nociceptive deep horsal horn neurons.


Asunto(s)
Interleucina-6/metabolismo , Células del Asta Posterior/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Médula Espinal/citología , Factor de Necrosis Tumoral alfa/farmacología , Potenciales de Acción/efectos de los fármacos , Animales , Proteínas de Unión al Calcio/metabolismo , Línea Celular Tumoral , Receptor gp130 de Citocinas/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Masculino , Ratones , Proteínas de Microfilamentos/metabolismo , Microglía/efectos de los fármacos , Microglía/metabolismo , Minociclina/farmacología , Estimulación Física , Células del Asta Posterior/metabolismo , Ratas , Ratas Wistar , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Factores de Tiempo , Ubiquitina Tiolesterasa/metabolismo
12.
Proc Natl Acad Sci U S A ; 110(33): 13648-53, 2013 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-23904482

RESUMEN

The pain mediator prostaglandin E2 (PGE2) sensitizes nociceptive pathways through EP2 and EP4 receptors, which are coupled to Gs proteins and increase cAMP. However, PGE2 also activates EP3 receptors, and the major signaling pathway of the EP3 receptor splice variants uses inhibition of cAMP synthesis via Gi proteins. This opposite effect raises the intriguing question of whether the Gi-protein-coupled EP3 receptor may counteract the EP2 and EP4 receptor-mediated pronociceptive effects of PGE2. We found extensive localization of the EP3 receptor in primary sensory neurons and the spinal cord. The selective activation of the EP3 receptor at these sites did not sensitize nociceptive neurons in healthy animals. In contrast, it produced profound analgesia and reduced responses of peripheral and spinal nociceptive neurons to noxious stimuli but only when the joint was inflamed. In isolated dorsal root ganglion neurons, EP3 receptor activation counteracted the sensitizing effect of PGE2, and stimulation of excitatory EP receptors promoted the expression of membrane-associated inhibitory EP3 receptor. We propose, therefore, that the EP3 receptor provides endogenous pain control and that selective activation of EP3 receptors may be a unique approach to reverse inflammatory pain. Importantly, we identified the EP3 receptor in the joint nerves of patients with painful osteoarthritis.


Asunto(s)
Inflamación/fisiopatología , Nocicepción/fisiología , Nociceptores/metabolismo , Subtipo EP3 de Receptores de Prostaglandina E/metabolismo , Análisis de Varianza , Animales , Cartilla de ADN/genética , Humanos , Inmunohistoquímica , Articulaciones/fisiopatología , Osteoartritis/fisiopatología , Técnicas de Placa-Clamp , Reacción en Cadena de la Polimerasa , Polimorfismo de Longitud del Fragmento de Restricción , Ratas , Ratas Endogámicas Lew
15.
Ann Neurol ; 76(1): 43-53, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24798682

RESUMEN

OBJECTIVE: Brain damage and ischemia often trigger cortical spreading depression (CSD), which aggravates brain damage. The proinflammatory cytokine tumor necrosis factor (TNF) is significantly upregulated during brain damage, but it is unknown whether TNF influences spreading depression in cerebral cortex in vivo. This question is important because TNF not only furthers inflammatory reactions but might also be neuroprotective. Here we tested the hypothesis that TNF affects CSD, and we explored the direction in which CSD is modified by TNF. METHODS: CSD, elicited by pressure microinjection of KCl, was recorded in anesthetized rats and mice. TNF was administered locally into a trough, providing local TNF treatment of a cortical area. For further analysis, antibodies to TNF receptor (TNFR) 1 or 2 were applied, or CSD was monitored in TNFR1 and TNFR2 knockout mice. γ-Aminobutyric acid (GABA)A receptors were blocked by bicuculline. Immunohistochemistry localized the cortical expression of TNFR1 and TNFR2. RESULTS: Local application of TNF to the cortex reduced dose-dependently the amplitude of CSD. This effect was prevented by blockade or knockout of TNFR2 but not by blockade or knockout of TNFR1. TNFR2 was localized at cortical neurons including parvalbumin-positive inhibitory interneurons, and blockade of GABAA receptors by bicuculline prevented the reduction of CSD amplitudes by TNF. INTERPRETATION: We identified a functional link between TNF and CSD. TNF activates TNFR2 in cortical inhibitory interneurons. The resulting release of GABA reduces CSD amplitudes. In this manner, TNF might be neuroprotective in pathological conditions.


Asunto(s)
Depresión de Propagación Cortical/fisiología , Inhibición Neural/fisiología , Factores de Necrosis Tumoral/fisiología , Animales , Masculino , Ratones , Ratones Noqueados , Ratas , Ratas Wistar , Receptores Tipo I de Factores de Necrosis Tumoral/fisiología , Receptores Tipo II del Factor de Necrosis Tumoral/fisiología , Factores de Necrosis Tumoral/administración & dosificación , Ácido gamma-Aminobutírico/metabolismo
16.
Handb Exp Pharmacol ; 227: 1-14, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25846611

RESUMEN

Current pain treatment is successful in many patients, but nevertheless numerous problems have to be solved because still about 20% of the people in the population suffer from chronic pain. A major aim of pain research is, therefore, to clarify the neuronal mechanisms which are involved in the generation and maintenance of different pain states and to identify the mechanisms which can be targeted for pain treatment. This volume on pain control addresses neuronal pain mechanisms at the peripheral, spinal, and supraspinal level which are thought to significantly contribute to pain and which may be the basis for the development of new treatment principles. This introductory chapter addresses the types of pain which are currently defined based on the etiopathologic considerations, namely physiologic nociceptive pain, pathophysiologic nociceptive pain, and neuropathic pain. It briefly describes the structures and neurons of the nociceptive system, and it addresses molecular mechanisms of nociception which may become targets for pharmaceutical intervention. It will provide a frame for the chapters which address a number of important topics. Such topics are the concept of hyperalgesic priming, the role of voltage-gated sodium channels and nerve growth factor (NGF) in different inflammatory and neuropathic pain states, the hyperalgesic effects of NGF in different tissues, the contribution of proteinase-activated receptors (PARs) to the development of pain in several chronic pain conditions, the role of spinal NO and of glial cell activation in the generation and maintenance of inflammatory and neuropathic pain, the potential role of spinal inhibitory interneurons, the endogenous endocannabinoid system, and the importance of nonneuronal immune mechanisms in opioid signaling in the control of pain, the influence of spinal mechanisms on the expression of peripheral inflammation, the role of the amygdala and their connections to the medial prefrontal cortex in pain states, the experimental methods to test central sensitization of the nociceptive system in humans, and differences and similarities of the neuronal systems of pain and itch. Finally it will be discussed that both the concentration on single key molecules of nociception and the interference with disease-related mediators may provide novel approaches of pain treatment.


Asunto(s)
Neuronas/fisiología , Dolor/fisiopatología , Animales , Humanos , Neuralgia/fisiopatología , Nocicepción/fisiología , Dolor/tratamiento farmacológico , Transmisión Sináptica
19.
Mol Cell Neurosci ; 52: 152-60, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23147107

RESUMEN

In addition to the proinflammatory cytokines tumor necrosis factor-α, interleukin-6 and interleukin-1ß, the cytokine interleukin-17 (IL-17) is considered an important mediator of autoimmune diseases such as rheumatoid arthritis. Because tumor necrosis factor-α and interleukin-1ß have the potential to influence the expression of transduction molecules such as transient receptor potential vanilloid 1 (TRPV1) in dorsal root ganglion (DRG) neurons and thus to contribute to pain we explored in the present study whether IL-17A activates DRG neurons and influences the expression of TRPV1. The IL-17A receptor was visualized in most neurons in dorsal root ganglion (DRG) sections as well as in cultured DRG neurons. Upon long-term exposure to IL-17A, isolated and cultured rat DRG neurons showed a significant upregulation of extracellular-regulated kinase (ERK) and nuclear factor κB (NFκB). Long-term exposure of neurons to IL-17A did not upregulate the expression of TRPV1. However, we found a pronounced upregulation of transient receptor potential vanilloid 4 (TRPV4) which is considered a candidate transduction molecule for mechanical hyperalgesia. Upon the injection of zymosan into the paw, IL-17A-deficient mice showed less mechanical hyperalgesia than wild type mice but thermal hyperalgesia was not attenuated in IL-17A-deficient mice. These data show, therefore, a particular role of IL-17 in mechanical hyperalgesia, and they suggest that this effect is linked to an activation and upregulation of TRPV4.


Asunto(s)
Hiperalgesia/metabolismo , Interleucina-17/metabolismo , Neuronas/metabolismo , Transducción de Señal/fisiología , Canales Catiónicos TRPV/metabolismo , Animales , Ganglios Espinales/metabolismo , Masculino , Ratones , Ratones Noqueados , Ratas , Ratas Wistar , Regulación hacia Arriba
20.
Neurosci Lett ; 832: 137814, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38723760

RESUMEN

Galanin (Gal) is a neuropeptide with the potential to ameliorate cortical spreading depolarization (CSD), an electrophysiological phenomenon occurring after brain injury or in migraine aura. Gal is expressed in all cortical neurons both in rat and in mouse cortices. Here we investigated whether the effect of Gal on CSD previously described in the rat is conserved in the mouse cortex. In rats, the topical application of Gal to the cortex for 1 h did not induce any change in CSD amplitudes, propagation velocity, or threshold of elicitation. Rather, topical application of Gal for 3 h was necessary to obtain a significant decrease in these CSD parameters and to develop a remarkable increase in the KCl threshold to elicit a CSD in rat cortex. In contrast, the topical application of Gal on cortical surface for 1 h in mice was sufficient to significantly attenuate CSD amplitudes and increase threshold. A thinner cortex, a faster diffusion or different affinity/expression of receptors for Gal are possible reasons to explain this difference in the time course between rats and mice. Our data are relevant to postulate Gal as a potential target for inhibition of CSD under pathological situations such as stroke or ischemia. SIGNIFICANCE STATEMENT: The neuropeptide Galanin (Gal) is expressed in all neurons throughout the cerebral cortex, both in rats and mice, and is able to reduce or even inhibit Cortical Spreading Depolarization, thus, Gal has the potential to control neuronal excitability that may identify Gal as a target in drug development against CSD.


Asunto(s)
Corteza Cerebral , Depresión de Propagación Cortical , Galanina , Animales , Galanina/farmacología , Galanina/metabolismo , Depresión de Propagación Cortical/efectos de los fármacos , Depresión de Propagación Cortical/fisiología , Masculino , Ratones , Ratas , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA