Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 582(7810): 119-123, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32494069

RESUMEN

The three-dimensional architecture of the genome governs its maintenance, expression and transmission. The cohesin protein complex organizes the genome by topologically linking distant loci, and is highly enriched in specialized chromosomal domains surrounding centromeres, called pericentromeres1-6. Here we report the three-dimensional structure of pericentromeres in budding yeast (Saccharomyces cerevisiae) and establish the relationship between genome organization and function. We find that convergent genes mark pericentromere borders and, together with core centromeres, define their structure and function by positioning cohesin. Centromeres load cohesin, and convergent genes at pericentromere borders trap it. Each side of the pericentromere is organized into a looped conformation, with border convergent genes at the base. Microtubule attachment extends a single pericentromere loop, size-limited by convergent genes at its borders. Reorienting genes at borders into a tandem configuration repositions cohesin, enlarges the pericentromere and impairs chromosome biorientation during mitosis. Thus, the linear arrangement of transcriptional units together with targeted cohesin loading shapes pericentromeres into a structure that is competent for chromosome segregation. Our results reveal the architecture of the chromosomal region within which kinetochores are embedded, as well as the restructuring caused by microtubule attachment. Furthermore, we establish a direct, causal relationship between the three-dimensional genome organization of a specific chromosomal domain and cellular function.


Asunto(s)
Centrómero/genética , Centrómero/metabolismo , Genes Fúngicos , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/metabolismo , Centrómero/química , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica , Genoma Fúngico/genética , Viabilidad Microbiana/genética , Mitosis/genética , Conformación Molecular , Cohesinas
2.
Bioessays ; 41(1): e1800182, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30506702

RESUMEN

The extreme length of chromosomal DNA requires organizing mechanisms to both promote functional genetic interactions and ensure faithful chromosome segregation when cells divide. Microscopy and genome-wide contact frequency analyses indicate that intra-chromosomal looping of DNA is a primary pathway of chromosomal organization during all stages of the cell cycle. DNA loop extrusion has emerged as a unifying model for how chromosome loops are formed in cis in different genomic contexts and cell cycle stages. The highly conserved family of SMC complexes have been found to be required for DNA cis-looping and have been suggested to be the enzymatic core of loop extruding machines. Here, the current body of evidence available for the in vivo and in vitro action of SMC complexes is discussed and compared to the predictions made by the loop extrusion model. How SMC complexes may differentially act on chromatin to generate DNA loops and how they could work to generate the dynamic and functionally appropriate organization of DNA in cells is explored.


Asunto(s)
Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Animales , Archaea/metabolismo , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromatina/ultraestructura , ADN/metabolismo , Eucariontes/metabolismo , Humanos
3.
Nature ; 493(7431): 246-9, 2013 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-23178809

RESUMEN

Impediments to DNA replication are known to induce gross chromosomal rearrangements (GCRs) and copy-number variations (CNVs). GCRs and CNVs underlie human genomic disorders and are a feature of cancer. During cancer development, environmental factors and oncogene-driven proliferation promote replication stress. Resulting GCRs and CNVs are proposed to contribute to cancer development and therapy resistance. When stress arrests replication, the replisome remains associated with the fork DNA (stalled fork) and is protected by the inter-S-phase checkpoint. Stalled forks efficiently resume when the stress is relieved. However, if the polymerases dissociate from the fork (fork collapse) or the fork structure breaks (broken fork), replication restart can proceed either by homologous recombination or microhomology-primed re-initiation. Here we ascertain the consequences of replication with a fork restarted by homologous recombination in fission yeast. We identify a new mechanism of chromosomal rearrangement through the observation that recombination-restarted forks have a considerably high propensity to execute a U-turn at small inverted repeats (up to 1 in 40 replication events). We propose that the error-prone nature of restarted forks contributes to the generation of GCRs and gene amplification in cancer, and to non-recurrent CNVs in genomic disorders.


Asunto(s)
Inversión Cromosómica/genética , Replicación del ADN/genética , Secuencias Invertidas Repetidas/genética , Modelos Genéticos , Recombinación Genética/genética , Schizosaccharomyces/genética , Variaciones en el Número de Copia de ADN/genética , ADN de Hongos/genética , ADN Ribosómico/genética , Genes Fúngicos/genética , Neoplasias/genética , Saccharomyces cerevisiae/genética
4.
Proc Natl Acad Sci U S A ; 112(33): E4565-70, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26240319

RESUMEN

Faithful genome duplication and inheritance require the complete resolution of all intertwines within the parental DNA duplex. This is achieved by topoisomerase action ahead of the replication fork or by fork rotation and subsequent resolution of the DNA precatenation formed. Although fork rotation predominates at replication termination, in vitro studies have suggested that it also occurs frequently during elongation. However, the factors that influence fork rotation and how rotation and precatenation may influence other replication-associated processes are unknown. Here we analyze the causes and consequences of fork rotation in budding yeast. We find that fork rotation and precatenation preferentially occur in contexts that inhibit topoisomerase action ahead of the fork, including stable protein-DNA fragile sites and termination. However, generally, fork rotation and precatenation are actively inhibited by Timeless/Tof1 and Tipin/Csm3. In the absence of Tof1/Timeless, excessive fork rotation and precatenation cause extensive DNA damage following DNA replication. With Tof1, damage related to precatenation is focused on the fragile protein-DNA sites where fork rotation is induced. We conclude that although fork rotation and precatenation facilitate unwinding in hard-to-replicate contexts, they intrinsically disrupt normal chromosome duplication and are therefore restricted by Timeless/Tipin.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Inestabilidad Cromosómica , Replicación del ADN , Proteínas de Unión al ADN/fisiología , ADN/química , Proteínas de Saccharomyces cerevisiae/fisiología , Ciclo Celular , ADN-Topoisomerasas de Tipo II/metabolismo , ADN de Hongos/química , Eliminación de Gen , Genotipo , Fosforilación , Plásmidos/metabolismo , Saccharomycetales/genética , Procesos Estocásticos
5.
Methods Mol Biol ; 2004: 155-165, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31147916

RESUMEN

The chromosome organization activities of SMC complexes are crucial for correct gene expression and genetic inheritance in cells. Hi-C assays have revealed previously unsuspected levels of chromosome structure, with different types of chromosome structure facilitating function at different stages of the cell cycle. Elucidating how SMC complexes regulate these distinct types of organization is currently a key question in molecular biology.The range of genetic tools and the small genome size of the budding yeast Saccharomyces cerevisiae make it an ideal tool for studying how SMC complexes control chromosome structure in eukaryotic cells. A crucial advantage of S. cerevisiae over other systems is that large populations of cells can be easily arrested at distinct stages of the cell cycle and SMC gene function specifically ablated in the synchronized cells. Here we describe methods to prepare synchronously cell cycle-arrested populations of genetically modified S. cerevisiae cells for Hi-C analysis.


Asunto(s)
Ciclo Celular/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Puntos de Control del Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Cromosomas Fúngicos/genética
6.
Nat Commun ; 10(1): 4795, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31641121

RESUMEN

During meiotic prophase, chromosomes organise into a series of chromatin loops emanating from a proteinaceous axis, but the mechanisms of assembly remain unclear. Here we use Saccharomyces cerevisiae to explore how this elaborate three-dimensional chromosome organisation is linked to genomic sequence. As cells enter meiosis, we observe that strong cohesin-dependent grid-like Hi-C interaction patterns emerge, reminiscent of mammalian interphase organisation, but with distinct regulation. Meiotic patterns agree with simulations of loop extrusion with growth limited by barriers, in which a heterogeneous population of expanding loops develop along the chromosome. Importantly, CTCF, the factor that imposes similar features in mammalian interphase, is absent in S. cerevisiae, suggesting alternative mechanisms of barrier formation. While grid-like interactions emerge independently of meiotic chromosome synapsis, synapsis itself generates additional compaction that matures differentially according to telomere proximity and chromosome size. Collectively, our results elucidate fundamental principles of chromosome assembly and demonstrate the essential role of cohesin within this evolutionarily conserved process.


Asunto(s)
Cromosomas Fúngicos/fisiología , Meiosis , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas Fúngicos/química , Simulación por Computador , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Complejo Sinaptonémico/metabolismo , Cohesinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA