Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Proc Biol Sci ; 288(1951): 20210690, 2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-34034515

RESUMEN

Many animals make behavioural changes to cope with winter conditions, being gregariousness a common strategy. Several factors have been invoked to explain why gregariousness may evolve during winter, with individuals coming together and separating as they trade off the different costs and benefits of living in groups. These trade-offs may, however, change over space and time as a response to varying environmental conditions. Despite its importance, little is known about the factors triggering gregarious behaviour during winter and its change in response to variation in weather conditions is poorly documented. Here, we aimed at quantifying large-scale patterns in wintering associations over 23 years of the white-winged snowfinch Montifringilla nivalis nivalis. We found that individuals gather in larger groups at sites with harsh wintering conditions. Individuals at colder sites reunite later and separate earlier in the season than at warmer sites. However, the magnitude and phenology of wintering associations are ruled by changes in weather conditions. When the temperature increased or the levels of precipitation decreased, group size substantially decreased, and individuals stayed united in groups for a shorter time. These results shed light on factors driving gregariousness and points to shifting winter climate as an important factor influencing this behaviour.


Asunto(s)
Clima , Tiempo (Meteorología) , Animales , Cambio Climático , Frío , Estaciones del Año , Temperatura
2.
Sci Rep ; 11(1): 22191, 2021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34772973

RESUMEN

To track peaks in resource abundance, temperate-zone animals use predictive environmental cues to rear their offspring when conditions are most favourable. However, climate change threatens the reliability of such cues when an animal and its resource respond differently to a changing environment. This is especially problematic in alpine environments, where climate warming exceeds the Holarctic trend and may thus lead to rapid asynchrony between peaks in resource abundance and periods of increased resource requirements such as reproductive period of high-alpine specialists. We therefore investigated interannual variation and long-term trends in the breeding phenology of a high-alpine specialist, the white-winged snowfinch, Montifringilla nivalis, using a 20-year dataset from Switzerland. We found that two thirds of broods hatched during snowmelt. Hatching dates positively correlated with April and May precipitation, but changes in mean hatching dates did not coincide with earlier snowmelt in recent years. Our results offer a potential explanation for recently observed population declines already recognisable at lower elevations. We discuss non-adaptive phenotypic plasticity as a potential cause for the asynchrony between changes in snowmelt and hatching dates of snowfinches, but the underlying causes are subject to further research.


Asunto(s)
Conducta Animal , Aves/fisiología , Ambiente , Reproducción , Estaciones del Año , Animales , Cruzamiento , Modelos Teóricos , Variaciones Dependientes del Observador , Nieve , Análisis Espacio-Temporal , Suiza
3.
Sci Rep ; 10(1): 8386, 2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32433523

RESUMEN

Mountain ecosystems are inhabited by highly specialised and endemic species which are particularly susceptible to climatic changes. However, the mechanisms by which climate change affects species population dynamics are still largely unknown, particularly for mountain birds. We investigated how weather variables correlate with survival or movement of the white-winged snowfinch Montifringilla nivalis, a specialist of high-elevation habitat. We analysed a 15-year (2003-2017) mark-recapture data set of 671 individuals from the Apennines (Italy), using mark-recapture models. Mark-recapture data allow estimating, forgiven time intervals, the probability that individuals stay in the study area and survive, the so called apparent survival. We estimated annual apparent survival to be around 0.44-0.54 for males and around 0.51-0.64 for females. Variance among years was high (range: 0.2-0.8), particularly for females. Apparent survival was lower in winter compared to summer. Female annual apparent survival was negatively correlated with warm and dry summers, whereas in males these weather variables only weakly correlated with apparent survival. Remarkably, the average apparent survival measured in this study was lower than expected. We suggest that the low apparent survival may be due to recent changes in the environment caused by global warming. Possible, non-exclusive mechanisms that potentially also could explain sexual differential apparent survival act via differential breeding dispersal, hyperthermia, weather-dependent food availability, and weather-dependent trade-off between reproduction and self-maintenance. These results improve our current understanding of the mechanisms driving population dynamics in high-elevation specialist birds, which are particularly at risk due to climate change.


Asunto(s)
Tiempo (Meteorología) , Animales , Ecosistema , Femenino , Calentamiento Global , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA