Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(21)2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34769033

RESUMEN

Copper (Cu) is an essential element for most living plants, but it is toxic for plants when present in excess. To better understand the response mechanism under excess Cu in plants, especially in flowers, transcriptome sequencing on petunia buds and opened flowers under excess Cu was performed. Interestingly, the transcript level of FIT-independent Fe deficiency response genes was significantly affected in Cu stressed petals, probably regulated by basic-helix-loop-helix 121 (bHLH121), while no difference was found in Fe content. Notably, the expression level of bHLH121 was significantly down-regulated in petals under excess Cu. In addition, the expression level of genes related to photosystem II (PSII), photosystem I (PSI), cytochrome b6/f complex, the light-harvesting chlorophyll II complex and electron carriers showed disordered expression profiles in petals under excess Cu, thus photosynthesis parameters, including the maximum PSII efficiency (FV/FM), nonphotochemical quenching (NPQ), quantum yield of the PSII (ΦPS(II)) and photochemical quenching coefficient (qP), were reduced in Cu stressed petals. Moreover, the chlorophyll a content was significantly reduced, while the chlorophyll b content was not affected, probably caused by the increased expression of chlorophyllide a oxygenase (CAO). Together, we provide new insight into excess Cu response and the Cu-Fe crosstalk in flowers.


Asunto(s)
Cobre/farmacología , Petunia/efectos de los fármacos , Petunia/genética , Transcripción Genética/efectos de los fármacos , Transcripción Genética/genética , Clorofila/genética , Clorofila A/genética , Perfilación de la Expresión Génica/métodos , Hierro/farmacología , Luz , Fotosíntesis/efectos de los fármacos , Fotosíntesis/genética , Complejo de Proteína del Fotosistema I/efectos de los fármacos , Complejo de Proteína del Fotosistema I/genética , Complejo de Proteína del Fotosistema II/efectos de los fármacos , Complejo de Proteína del Fotosistema II/genética , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética
2.
Plant J ; 97(2): 306-320, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30288820

RESUMEN

Calamine accessions of the zinc/cadmium/nickel hyperaccumulator, Noccaea caerulescens, exhibit striking variation in foliar cadmium accumulation in nature. The Ganges accession (GA) from Southern France displays foliar cadmium hyperaccumulation (>1000 µg g-1 DW), whereas the accession La Calamine (LC) from Belgium, with similar local soil metal composition, does not (<100 µg g-1 DW). All calamine accessions are cadmium hypertolerant. To find out the differences between LC and GA in their basic adaptation mechanisms, we bypassed the cadmium excluding phenotype of LC by exposing the plants to 50 µm cadmium in hydroponics, achieving equal cadmium accumulation in the shoots. The iron content increased in the roots of both accessions. GA exhibited significant decreases in manganese and zinc contents in the roots and shoots, approaching those in LC. Altogether 702 genes responded differently to cadmium exposure between the accessions, 157 and 545 in the roots and shoots, respectively. Cadmium-exposed LC showed a stress response and had decreased levels of a wide range of photosynthesis-related transcripts. GA showed less changes, mainly exhibiting an iron deficiency-like response. This included increased expression of genes encoding five iron deficiency-regulated bHLH transcription factors, ferric reduction oxidase FRO2, iron transporters IRT1 and OPT3, and nicotianamine synthase NAS1, and decreased expression of genes encoding ferritins and NEET (a NEET family iron-sulfur protein), which is possibly involved in iron transfer, distribution and/or management. The function of the IRT1 gene in the accessions was compared. We conclude that the major difference between the two accessions is in the way they cope with iron under cadmium exposure.


Asunto(s)
Brassicaceae/genética , Cadmio/metabolismo , Hierro/metabolismo , Transcriptoma , Brassicaceae/fisiología , Productos Agrícolas , Homeostasis , Hidroponía , Deficiencias de Hierro , Metales/metabolismo , Fotosíntesis/genética , Raíces de Plantas/genética , Raíces de Plantas/fisiología , RNA-Seq , Thlaspi/genética , Thlaspi/fisiología , Zinc/metabolismo
3.
Mol Ecol ; 2018 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-30010225

RESUMEN

Metal hyperaccumulation in plants is an ecological trait whose biological significance remains debated, in particular because the selective pressures that govern its evolutionary dynamics are complex. One of the possible causes of quantitative variation in hyperaccumulation may be local adaptation to metalliferous soils. Here, we explored the population genetic structure of Arabidopsis halleri at fourteen metalliferous and nonmetalliferous sampling sites in southern Poland. The results were integrated with a quantitative assessment of variation in zinc hyperaccumulation to trace local adaptation. We identified a clear hierarchical structure with two distinct genetic groups at the upper level of clustering. Interestingly, these groups corresponded to different geographic subregions, rather than to ecological types (i.e., metallicolous vs. nonmetallicolous). Also, approximate Bayesian computation analyses suggested that the current distribution of A. halleri in southern Poland could be relictual as a result of habitat fragmentation caused by climatic shifts during the Holocene, rather than due to recent colonization of industrially polluted sites. In addition, we find evidence that some nonmetallicolous lowland populations may have actually derived from metallicolous populations. Meanwhile, the distribution of quantitative variation in zinc hyperaccumulation did separate metallicolous and nonmetallicolous accessions, indicating more recent adaptive evolution and diversifying selection between metalliferous and nonmetalliferous habitats. This suggests that zinc hyperaccumulation evolves both ways-towards higher levels at nonmetalliferous sites and lower levels at metalliferous sites. Our results open a new perspective on possible evolutionary relationships between A. halleri edaphic types that may inspire future genetic studies of quantitative variation in metal hyperaccumulation.

4.
New Phytol ; 215(3): 1102-1114, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28620999

RESUMEN

Silene vulgaris is a metallophyte of calamine, cupriferous and serpentine soils all over Europe. Its metallicolous populations are hypertolerant to zinc (Zn), cadmium (Cd), copper (Cu) or nickel (Ni), compared with conspecific nonmetallicolous populations. These hypertolerances are metal-specific, but the underlying mechanisms are poorly understood. We investigated the role of HMA5 copper transporters in Cu-hypertolerance of a S. vulgaris copper mine population. Cu-hypertolerance in Silene is correlated and genetically linked with enhanced expression of two HMA5 paralogs, SvHMA5I and SvHMA5II, each of which increases Cu tolerance when expressed in Arabidopsis thaliana. Most Spermatophytes, except Brassicaceae, possess homologs of SvHMA5I and SvHMA5II, which originate from an ancient duplication predating the appearance of spermatophytes. SvHMA5II and the A. thaliana homolog AtHMA5 localize in the endoplasmic reticulum and upon Cu exposure move to the plasma membrane, from where they are internalized and degraded in the vacuole. This resembles trafficking of mammalian homologs and is apparently an extremely ancient mechanism. SvHMA5I, instead, neofunctionalized and always resides on the tonoplast, likely sequestering Cu in the vacuole. Adaption of Silene to a Cu-polluted soil is at least in part due to upregulation of two distinct HMA5 transporters, which contribute to Cu hypertolerance by distinct mechanisms.


Asunto(s)
Adaptación Fisiológica/efectos de los fármacos , Arabidopsis/genética , Cobre/metabolismo , Cobre/toxicidad , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Silene/metabolismo , Secuencia de Aminoácidos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Endocitosis , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Transporte de Membrana/química , Filogenia , Proteínas de Plantas/química , Raíces de Plantas/citología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Proteolisis , ARN Mensajero/genética , ARN Mensajero/metabolismo , Silene/efectos de los fármacos , Silene/genética , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Vacuolas/metabolismo
5.
Plant Cell Environ ; 39(12): 2650-2662, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27457432

RESUMEN

Soil salinity is becoming an increasingly large problem in agriculture. In this study, we have investigated whether a capacity to withstand salinity can be induced in the salinity sensitive plant species Arabidopsis thaliana, and whether it can be maintained in subsequent generations. To this end, we have used zinc finger artificial transcription factor (ZF-ATFs) mediated genome interrogation. Already within a relatively small collection Arabidopsis lines expressing ZF-ATFs, we found 41 lines that were tolerant to 100 mM NaCl. Furthermore, ZF-ATF encoding gene constructs rescued from the most strongly salinity tolerant lines were indeed found to act as dominant and heritable agents for salinity tolerance. Altogether, our data provide evidence that a silent capacity to withstand normally lethal levels of salinity exists in Arabidopsis and can be evoked relatively easily by in trans acting transcription factors like ZF-ATFs.


Asunto(s)
Arabidopsis/genética , Genoma de Planta/genética , Plantas Tolerantes a la Sal/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Clorofila/metabolismo , Genoma de Planta/fisiología , Mutación , Plantas Modificadas Genéticamente , Plantas Tolerantes a la Sal/fisiología , Factores de Transcripción/genética , Factores de Transcripción/fisiología , Dedos de Zinc/genética , Dedos de Zinc/fisiología
6.
Ann Bot ; 116(4): 601-12, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26070641

RESUMEN

BACKGROUND AND AIMS: Cadmium (Cd) is a non-essential trace element that elicits oxidative stress. Plants respond to Cd toxicity via increasing their Cd-chelating and antioxidative capacities. They predominantly chelate Cd via glutathione (GSH) and phytochelatins (PCs), while antioxidative defence is mainly based on the use and recycling of both GSH and ascorbate (AsA), complemented by superoxide dismutase (SOD) and catalase (CAT). In addition, both metabolites act as a substrate for the regeneration of other essential antioxidants, which neutralize and regulate reactive oxygen species (ROS). Together, these functions influence the concentration and cellular redox state of GSH and AsA. In this study, these two parameters were examined in plants of Arabidopsis thaliana exposed to sub-lethal Cd concentrations. METHODS: Wild-type plants and mutant arabidopsis plants containing 30-45 % of wild-type levels of GSH (cad2-1) or 40-50 % of AsA (vtc1-1), together with the double-mutant (cad2-1 vtc1-1) were cultivated in a hydroponic system and exposed to sub-lethal Cd concentrations. Cadmium detoxification was investigated at different levels including gene expression and metabolite concentrations. KEY RESULTS: In comparison with wild-type plants, elevated basal thiol levels and enhanced PC synthesis upon exposure to Cd efficiently compensated AsA deficiency in vtc1-1 plants and contributed to decreased sensitivity towards Cd. Glutathione-deficient (cad2-1 and cad2-1 vtc1-1) mutants, however, showed a more oxidized GSH redox state, resulting in initial oxidative stress and a higher sensitivity to Cd. In order to cope with the Cd stress to which they were exposed, GSH-deficient mutants activated multiple alternative pathways. CONCLUSIONS: Our observations indicate that GSH and AsA deficiency differentially alter plant GSH homeostasis, resulting in opposite Cd sensitivities relative to wild-type plants. Upon Cd exposure, GSH-deficient mutants were hampered in chelation. They experienced phenotypic disturbances and even more oxidative stress, and therefore activated multiple alternative pathways such as SOD, CAT and ascorbate peroxidase, indicating a higher Cd sensitivity. Ascorbate deficiency, however, was associated with enhanced PC synthesis in comparison with wild-type plants after Cd exposure, which contributed to decreased sensitivity towards Cd.


Asunto(s)
Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Ácido Ascórbico/farmacología , Cadmio/toxicidad , Glutatión/farmacología , Antioxidantes/metabolismo , Arabidopsis/enzimología , Ácido Ascórbico/metabolismo , Glutatión/química , Glutatión/metabolismo , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo
7.
New Phytol ; 203(2): 508-519, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24750120

RESUMEN

Histidine plays a crucial role in nickel (Ni) translocation in Ni-hyperaccumulating plants. Here, we investigated its role in zinc (Zn) translocation in four accessions of the Zn hyperaccumulator, Noccaea caerulescens, using the related non-hyperaccumulator, Thlaspi arvense, as a reference. We compared the effects of exogenous histidine supply on Zn xylem loading, and of Zn-histidine complex formation on Zn uptake in energized tonoplast vesicles. The Zn distribution patterns over root tissues were also compared. Exogenous histidine supply enhanced Zn xylem loading in all the N. caerulescens accessions, but decreased it in T. arvense. Zn distribution patterns over root tissues were similar, apart from the accumulation in cortical and endodermal cells, which was much lower in N. caerulescens than in T. arvense. Zn uptake in energized tonoplast vesicles was inhibited significantly in N. caerulescens, but not affected significantly in T. arvense, when Zn was supplied in combination with histidine in a 1:2 molar ratio. Histidine-mediated Zn xylem loading seems to be a species-wide character in N. caerulescens. It may well have evolved as a component trait of the hyperaccumulation machinery for Zn, rather than for Ni.


Asunto(s)
Brassicaceae/metabolismo , Xilema/metabolismo , Zinc/farmacocinética , Brassicaceae/efectos de los fármacos , Histidina , Transporte Iónico , Compuestos Organometálicos , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Especificidad de la Especie , Thlaspi/efectos de los fármacos , Thlaspi/metabolismo , Distribución Tisular , Zinc/metabolismo
8.
Environ Sci Technol ; 48(6): 3344-53, 2014 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-24559272

RESUMEN

Populations of Noccaea caerulescens show tremendous differences in their capacity to hyperaccumulate and hypertolerate metals. To explore the differences that could contribute to these traits, we undertook SOLiD high-throughput sequencing of the root transcriptomes of three phenotypically well-characterized N. caerulescens accessions, i.e., Ganges, La Calamine, and Monte Prinzera. Genes with possible contribution to zinc, cadmium, and nickel hyperaccumulation and hypertolerance were predicted. The most significant differences between the accessions were related to metal ion (di-, trivalent inorganic cation) transmembrane transporter activity, iron and calcium ion binding, (inorganic) anion transmembrane transporter activity, and antioxidant activity. Analysis of correlation between the expression profile of each gene and the metal-related characteristics of the accessions disclosed both previously characterized (HMA4, HMA3) and new candidate genes (e.g., for nickel IRT1, ZIP10, and PDF2.3) as possible contributors to the hyperaccumulation/tolerance phenotype. A number of unknown Noccaea-specific transcripts also showed correlation with Zn(2+), Cd(2+), or Ni(2+) hyperaccumulation/tolerance. This study shows that N. caerulescens populations have evolved great diversity in the expression of metal-related genes, facilitating adaptation to various metalliferous soils. The information will be helpful in the development of improved plants for metal phytoremediation.


Asunto(s)
Brassicaceae/genética , Brassicaceae/metabolismo , Metales Pesados/metabolismo , Transcriptoma/genética , Biodegradación Ambiental , Ecotipo , Perfilación de la Expresión Génica , Proteínas de Plantas/análisis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Contaminantes del Suelo/metabolismo
9.
Mol Microbiol ; 84(6): 1177-88, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22554109

RESUMEN

Arsenic is an environmental toxin and a worldwide health hazard. Since this metalloid is ubiquitous in nature, virtually all living organisms require systems for detoxification and tolerance acquisition. Here, we show that during chronic exposure to arsenite [As(III)], Saccharomyces cerevisiae (budding yeast) exports and accumulates the low-molecular-weight thiol molecule glutathione (GSH) outside of cells. Extracellular accumulation of the arsenite triglutathione complex As(GS)3 was also detected and direct transport assays demonstrate that As(GS)3 does not readily enter cells. Yeast cells with increased extracellular GSH levels accumulate less arsenic and display improved growth when challenged with As(III). Conversely, cells defective in export and extracellular accumulation of GSH are As(III) sensitive. Taken together, our data are consistent with a novel detoxification mechanism in which GSH is exported to protect yeast cells from arsenite toxicity by preventing its uptake.


Asunto(s)
Antifúngicos/antagonistas & inhibidores , Antifúngicos/metabolismo , Arsenitos/antagonistas & inhibidores , Arsenitos/metabolismo , Glutatión/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Inactivación Metabólica , Saccharomyces cerevisiae/crecimiento & desarrollo
11.
Proc Natl Acad Sci U S A ; 107(22): 10296-301, 2010 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-20479230

RESUMEN

Zinc is an essential micronutrient for all living organisms. When facing a shortage in zinc supply, plants adapt by enhancing the zinc uptake capacity. The molecular regulators controlling this adaptation are not known. We present the identification of two closely related members of the Arabidopsis thaliana basic-region leucine-zipper (bZIP) transcription factor gene family, bZIP19 and bZIP23, that regulate the adaptation to low zinc supply. They were identified, in a yeast-one-hybrid screening, to associate to promoter regions of the zinc deficiency-induced ZIP4 gene of the Zrt- and Irt-related protein (ZIP) family of metal transporters. Although mutation of only one of the bZIP genes hardly affects plants, we show that the bzip19 bzip23 double mutant is hypersensitive to zinc deficiency. Unlike the wild type, the bzip19 bzip23 mutant is unable to induce the expression of a small set of genes that constitutes the primary response to zinc deficiency, comprising additional ZIP metal transporter genes. This set of target genes is characterized by the presence of one or more copies of a 10-bp imperfect palindrome in their promoter region, to which both bZIP proteins can bind. The bZIP19 and bZIP23 transcription factors, their target genes, and the characteristic cis zinc deficiency response elements they can bind to are conserved in higher plants. These findings are a significant step forward to unravel the molecular mechanism of zinc homeostasis in plants, allowing the improvement of zinc bio-fortification to alleviate human nutrition problems and phytoremediation strategies to clean contaminated soils.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Zinc/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Secuencia de Bases , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Secuencia Conservada , ADN de Plantas/genética , Genes de Plantas , Prueba de Complementación Genética , Humanos , Mutagénesis Insercional , Mutación , Fenotipo , Plantas/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Técnicas del Sistema de Dos Híbridos
12.
Sci Total Environ ; 889: 164269, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37211127

RESUMEN

Acid mine drainage (AMD) is known as an important source of environmental pollution with potentially toxic elements. High concentrations of minerals in soil were observed in a pomegranate garden nearby a copper mine, Chaharmahal and Bakhtiari, Iran. In the vicinity of this mine, AMD locally caused distinct chlorosis in pomegranate trees. As expected, potentially toxic concentrations of Cu, Fe, and Zn were accumulated in the leaves of the chlorotic pomegranate trees (YLP), i.e., increased by 69 %, 67 % and 56 %, respectively, compared to the non-chlorotic trees (GLP). Remarkably, also some other elements, including Al (82 %), Na (39 %), Si (87 %), and Sr (69 %) were considerably enhanced in YLP, compared to GLP. On the other hand, the foliar Mn concentration in YLP was strongly decreased, about 62 % lower than that in GLP. The most plausible reasons for chlorosis in YLP are either toxicity of Al, Cu, Fe, Na, and Zn, or a deficiency of Mn. In addition, AMD led to oxidative stress, shown by a high accumulation of H2O2 in YLP, and a strong upregulation of enzymatic and non-enzymatic antioxidants. AMD apparently caused chlorosis, reduced the size of individual leaves, and caused lipid peroxidation. A further analysis of the adverse effect of the responsible AMD component(s) could be helpful to reduce the risk of food chain contamination.


Asunto(s)
Anemia Hipocrómica , Metales Pesados , Granada (Fruta) , Cobre/toxicidad , Árboles , Peróxido de Hidrógeno , Metales Pesados/análisis
13.
Plant Physiol Biochem ; 197: 107640, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36958152

RESUMEN

This pilot study aimed at comparing zinc (Zn) and nickel (Ni) effects on the fatty acid (FA) profiles, oxidative stress and desaturase activity in the Zn hyperaccumulator Arabidopsis halleri and the excluder Arabidopsis lyrata to allow a better picture of the physiological mechanisms which may contribute to metal tolerance or acclimation. The most significant changes in the FA composition were observed in the shoots of the hyperaccumulator and in the roots of the excluder, and were not only metal-dependent, but also species-specific, since the most significant changes in the shoots of A. halleri were observed under Ni treatment, though Ni, in contrast to Zn, was accumulated mainly in its roots. Several FAs appeared in the roots and shoots of A. lyrata only upon metal exposure, whereas they were already found in control A. halleri. In both species, there was an increase in oleic acid under Ni treatment in both organs, whereas in Zn-treated plants the increase was shown only for the shoots. A rare conjugated α-parinaric acid was identified only in the shoots of metal-treated A. halleri. In the shoots of the hyperaccumulator, there was an increase in the content of saturated FAs and a decrease in the content of unsaturated FAs, while in the roots of the excluder, the opposite pattern was observed. These metal-induced changes in FA composition in the shoots of A. halleri can lead to a decrease in the fluidity of membranes, which could diminish the penetration of ROS into the membrane and thus maintain its stability.


Asunto(s)
Arabidopsis , Arabidopsis/fisiología , Zinc/farmacología , Níquel/toxicidad , Ácidos Grasos/farmacología , Proyectos Piloto , Metales , Cadmio/farmacología
14.
Planta ; 233(6): 1173-84, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21327818

RESUMEN

Stress tolerance is currently one of the major research topics in plant biology because of the challenges posed by changing climate and increasing demand to grow crop plants in marginal soils. Increased Zn tolerance and accumulation has been reported in tobacco expressing the glyoxalase 1-encoding gene from Brassica juncea. Previous studies in our laboratory showed some Zn tolerance-correlated differences in the levels of glyoxalase 1-like protein among accessions of Zn hyperaccumulator Thlaspi caerulescens. We have now isolated the corresponding gene (named here TcGLX1), including ca. 570 bp of core and proximal promoter region. The predicted protein contains three glyoxalase 1 motifs and several putative sites for post-translational modification. In silico analysis predicted a number of cis-acting elements related to stress. The expression of TcGLX1 was not responsive to Zn. There was no correlation between the levels of TcGLX1 expression and the degrees of Zn tolerance or accumulation among T. caerulescens accessions nor was there co-segregation of TcGLX1 expression with Zn tolerance or Zn accumulation among F3 lines derived from crosses between plants from accessions with contrasting phenotypes for these properties. No phenotype was observed in an A. thaliana T-DNA insertion line for the closest A. thaliana homolog of TcGLX1, ATGLX1. These results suggest that glyoxalase 1 or at least the particular isoform studied here is not a major determinant of Zn tolerance in the Zn hyperaccumulator plant T. caerulescens. In addition, ATGLX1 is not essential for normal Zn tolerance in the non-tolerant, non-accumulator plant A. thaliana. Possible explanations for the apparent discrepancy between this and previous studies are discussed.


Asunto(s)
Lactoilglutatión Liasa/genética , Metales Pesados/metabolismo , Proteínas de Plantas/genética , Thlaspi/enzimología , Thlaspi/genética , Adaptación Fisiológica/genética , Secuencia de Bases , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Lactoilglutatión Liasa/metabolismo , Datos de Secuencia Molecular , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , Análisis de Secuencia de Proteína , Estrés Fisiológico/genética , Thlaspi/metabolismo , Zinc/metabolismo
15.
Planta ; 234(1): 83-95, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21369921

RESUMEN

The synthesis of phytochelatins (PC) represents a major metal and metalloid detoxification mechanism in various species. PC most likely play a role in the distribution and accumulation of Cd and possibly other metals. However, to date, no studies have investigated the phytochelatin synthase (PCS) genes and their expression in the Cd-hyperaccumulating species. We used functional screens in two yeast species to identify genes expressed by two Cd hyperaccumulators (Arabidopsis halleri and Thlaspi caerulescens) and involved in cellular Cd tolerance. As a result of these screens, PCS genes were identified for both species. PCS1 was in each case the dominating cDNA isolated. The deduced sequences of AhPCS1 and TcPCS1 are very similar to AtPCS1 and their identity is particularly high in the proposed catalytic N-terminal domain. We also identified in A. halleri and T. caerulescens orthologues of AtPCS2 that encode functional PCS. As compared to A. halleri and A. thaliana, T. caerulescens showed the lowest PCS expression. Furthermore, concentrations of PC in Cd-treated roots were the highest in A. thaliana, intermediate in A. halleri and the lowest in T. caerulescens. This mirrors the known capacity of these species to translocate Cd to the shoot, with T. caerulescens being the best translocator. Very low or undetectable concentrations of PC were measured in A. halleri and T. caerulescens shoots, contrary to A. thaliana. These results suggest that extremely efficient alternative Cd sequestration pathways in leaves of Cd hyperaccumulators prevent activation of PC synthase by Cd²âº ions.


Asunto(s)
Aminoaciltransferasas/metabolismo , Arabidopsis/enzimología , Fitoquelatinas/biosíntesis , Thlaspi/enzimología , Secuencia de Aminoácidos , Aminoaciltransferasas/química , Aminoaciltransferasas/aislamiento & purificación , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/aislamiento & purificación , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Cadmio/metabolismo , Quelantes/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Datos de Secuencia Molecular , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Thlaspi/genética , Thlaspi/metabolismo , Zinc/metabolismo
16.
J Exp Bot ; 61(4): 1075-87, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20048332

RESUMEN

Metal hyperaccumulator plants have previously been characterized by transcriptomics, but reports on other profiling techniques are scarce. Protein profiles of Thlaspi caerulescens accessions La Calamine (LC) and Lellingen (LE) and lines derived from an LCxLE cross were examined here to determine the co-segregation of protein expression with the level of zinc (Zn) hyperaccumulation. Although hydrophobic proteins such as membrane transporters are not disclosed, this approach has the potential to reveal other proteins important for the Zn hyperaccumulation trait. Plants were exposed to metals. Proteins were separated using two-dimensional electrophoresis and those showing differences among accessions, lines or metal exposures were subjected to mass-spectrometric analysis for identification. Crossing decreased the number of different proteins in the lines compared with the parents, more so in the shoots than in the roots, but the frequencies of Zn-responsive proteins were about the same in the accessions and the selection lines. This supports the finding that the Zn accumulation traits are mainly determined by the root and that Zn accumulation itself is not the reason for the co-segregation. This study demonstrates that crossing accessions with contrasting Zn accumulation traits is a potent tool to investigate the mechanisms behind metal hyperaccumulation. Four tentatively identified root proteins showed co-segregation with high or low Zn accumulation: manganese superoxide dismutase, glutathione S-transferase, S-formyl glutathione hydrolase, and translation elongation factor 5A-2. However, these proteins may not be the direct determinants of Zn accumulation. The role of these and other tentatively identified proteins in Zn accumulation and tolerance is discussed.


Asunto(s)
Proteómica , Thlaspi/química , Zinc/metabolismo , Electroforesis en Gel Bidimensional , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Thlaspi/genética , Thlaspi/metabolismo
17.
Plant Physiol Biochem ; 156: 538-551, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33059265

RESUMEN

Copper (Cu) locally contaminates soils and might negatively affect growth and yield of crops. A better understanding of plant copper tolerance and accumulation is needed in order to breed more Cu-tolerant or Cu-efficient crops. Cu tolerance was evaluated in different varieties of seven species (Brassica carinata, B. juncea, B. napus, Cynara cardunculus, Helianthus annuus, Nicotiana tabacum and Raphanus sativus) exposed to a series of CuSO4 concentrations (0.1-8 µM CuSO4) in the nutrient solution. Plants were further exposed to 0.1 µM CuSO4 and to their variety-specific concentrations that reduced root growth to 50% of the maximum rate (EC50). Among all the varieties of all the species the EC50 varied from 0.7 up to 3.1 µM Cu. B. carinata was significantly more Cu-sensitive than the other species, which were not significantly different among each other, and B. carinata and H. annuus accommodated significant intra-specific, inter-varietal variation. There were significant differences between species in Cu uptake efficiency and nutrient status. When under EC50 exposure, all the Brassicaceae, except B. carinata, maintained low Cu concentrations in shoots, whereas the other species and B. carinata exhibited significantly increased shoot Cu concentrations, compared to the control. There was no apparent relationship between Cu tolerance and Cu accumulation in roots and shoots, suggesting that the observed variation in tolerance, both between and within species, is not explained by differential exclusion capacity. Discriminant analysis and treatment comparisons suggest possible contribution of lignin, saturated fatty acids, manganese (Mn) and zinc (Zn) in tolerance to high Cu concentrations in shoot.


Asunto(s)
Cobre/metabolismo , Cobre/toxicidad , Productos Agrícolas/fisiología , Contaminantes del Suelo/toxicidad , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo
18.
New Phytol ; 181(4): 759-776, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19192189

RESUMEN

Metal hyperaccumulator plants accumulate and detoxify extraordinarily high concentrations of metal ions in their shoots. Metal hyperaccumulation is a fascinating phenomenon, which has interested scientists for over a century. Hyperaccumulators constitute an exceptional biological material for understanding mechanisms regulating plant metal homeostasis as well as plant adaptation to extreme metallic environments.Our understanding of metal hyperaccumulation physiology has recently increased as a result of the development of molecular tools. This review presents key aspects of our current understanding of plant metal ­ in particular cadmium (Cd),nickel (Ni) and zinc (Zn) ­ hyperaccumulation.


Asunto(s)
Brassicaceae/metabolismo , Metales Pesados/metabolismo , Biodegradación Ambiental , Evolución Biológica , Brassicaceae/genética , Cadmio/metabolismo , Níquel/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiología , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Suelo/química , Especificidad de la Especie , Zinc/metabolismo
19.
New Phytol ; 184(1): 180-192, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19656307

RESUMEN

Rosettes of 25 Arabidopsis thaliana accessions and an Antwerp-1 (An-1) x Landsberg erecta (Ler) population of recombinant inbred lines (RILs) grown in optimal watering conditions (OWC) and water deficit conditions (WDC) were analysed for mineral concentrations to identify genetic loci involved in adaptation of mineral homeostasis to drought stress. Correlations between mineral concentrations were determined for accessions and a quantitative trait locus (QTL) analysis was performed for the RIL population. Plant growth and rosette mineral contents strongly decreased in WDC compared with OWC. Mineral concentrations also generally decreased, except for phosphorus (P), which remained constant, and potassium (K), which increased. Large variations in mineral concentrations were observed among accessions, mostly correlated with total rosette leaf area. Mineral concentration QTLs were identified in the RIL population, but only a few were common for both conditions. Clusters of mineral concentration QTLs often cosegregated with dry weight QTLs. Water deficit has a strong effect on rosette mineral status. This is genetically determined and seems largely a pleiotropic effect of the reduction in growth. The low number of common mineral concentration QTLs, shared among different RIL populations, tissues and conditions in Arabidopsis, suggests that breeding for robust, mineral biofortified crops will be complex.


Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Sequías , Minerales/metabolismo , Sitios de Carácter Cuantitativo/genética , Biomasa , Mapeo Cromosómico , Cruzamientos Genéticos , Epistasis Genética , Genotipo , Endogamia , Hojas de la Planta/genética , Análisis de Componente Principal , Agua
20.
New Phytol ; 183(1): 106-116, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19368671

RESUMEN

* The mechanisms of enhanced root to shoot metal transport in heavy metal hyperaccumulators are incompletely understood. Here, we compared the distribution of nickel (Ni) over root segments and tissues in the hyperaccumulator Thlaspi caerulescens and the nonhyperaccumulator Thlaspi arvense, and investigated the role of free histidine in Ni xylem loading and Ni transport across the tonoplast. * Nickel accumulation in mature cortical root cells was apparent in T. arvense and in a high-Ni-accumulating T. caerulescens accession, but not in a low-accumulating T. caerulescens accession. * Compared with T. arvense, the concentration of free histidine in T. caerulescens was 10-fold enhanced in roots, but was only slightly higher in leaves, regardless of Ni exposure. Nickel uptake in MgATP-energized root- and shoot-derived tonoplast vesicles was almost completely blocked in T. caerulescens when Ni was supplied as a 1 : 1 Ni-histidine complex, but was uninhibited in T. arvense. Exogenous histidine supply enhanced Ni xylem loading in T. caerulescens but not in T. arvense. * The high rate of root to shoot translocation of Ni in T. caerulescens compared with T. arvense seems to depend on the combination of two distinct characters, that is, a greatly enhanced root histidine concentration and a strongly decreased ability to accumulate histidine-bound Ni in root cell vacuoles.


Asunto(s)
Adaptación Biológica/fisiología , Histidina/metabolismo , Transporte Iónico/fisiología , Níquel/metabolismo , Raíces de Plantas/metabolismo , Thlaspi/metabolismo , Vacuolas/metabolismo , Níquel/toxicidad , Hojas de la Planta/metabolismo , Brotes de la Planta/metabolismo , Thlaspi/efectos de los fármacos , Xilema/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA