Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Immunol ; 211(4): 693-705, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37395687

RESUMEN

Ionizing radiation (IR) can reprogram proteasome structure and function in cells and tissues. In this article, we show that IR can promote immunoproteasome synthesis with important implications for Ag processing and presentation and tumor immunity. Irradiation of a murine fibrosarcoma (FSA) induced dose-dependent de novo biosynthesis of the immunoproteasome subunits LMP7, LMP2, and Mecl-1, in concert with other changes in the Ag-presentation machinery (APM) essential for CD8+ T cell-mediated immunity, including enhanced expression of MHC class I (MHC-I), ß2-microglobulin, transporters associated with Ag processing molecules, and their key transcriptional activator NOD-like receptor family CARD domain containing 5. In contrast, in another less immunogenic, murine fibrosarcoma (NFSA), LMP7 transcripts and expression of components of the immunoproteasome and the APM were muted after IR, which affected MHC-I expression and CD8+ T lymphocyte infiltration into NFSA tumors in vivo. Introduction of LMP7 into NFSA largely corrected these deficiencies, enhancing MHC-I expression and in vivo tumor immunogenicity. The immune adaptation in response to IR mirrored many aspects of the response to IFN-γ in coordinating the transcriptional MHC-I program, albeit with notable differences. Further investigations showed divergent upstream pathways in that, unlike IFN-γ, IR failed to activate STAT-1 in either FSA or NFSA cells while heavily relying on NF-κB activation. The IR-induced shift toward immunoproteasome production within a tumor indicates that proteasomal reprogramming is part of an integrated and dynamic tumor-host response that is specific to the stressor and the tumor and therefore is of clinical relevance for radiation oncology.


Asunto(s)
Presentación de Antígeno , Fibrosarcoma , Humanos , Animales , Ratones , Complejo de la Endopetidasa Proteasomal , Linfocitos T CD8-positivos , Genes MHC Clase I , Antígenos de Histocompatibilidad Clase I
2.
J Pathol ; 250(5): 647-655, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31990369

RESUMEN

Normal tissue responses to ionizing radiation have been a major subject for study since the discovery of X-rays at the end of the 19th century. Shortly thereafter, time-dose relationships were established for some normal tissue endpoints that led to investigations into how the size of dose per fraction and the quality of radiation affected outcome. The assessment of the radiosensitivity of bone marrow stem cells using colony-forming assays by Till and McCulloch prompted the establishment of in situ clonogenic assays for other tissues that added to the radiobiology toolbox. These clonogenic and functional endpoints enabled mathematical modeling to be performed that elucidated how tissue structure, and in particular turnover time, impacted clinically relevant fractionated radiation schedules. More recently, lineage tracing technology, advanced imaging and single cell sequencing have shed further light on the behavior of cells within stem, and other, cellular compartments, both in homeostasis and after radiation damage. The discovery of heterogeneity within the stem cell compartment and plasticity in response to injury have added new dimensions to the consideration of radiation-induced tissue damage. Clinically, radiobiology of the 20th century garnered wisdom relevant to photon treatments delivered to a fairly wide field at around 2 Gy per fraction, 5 days per week, for 5-7 weeks. Recently, the scope of radiobiology has been extended by advances in technology, imaging and computing, as well as by the use of charged particles. These allow radiation to be delivered more precisely to tumors while minimizing the amount of normal tissue receiving high doses. One result has been an increase in the use of schedules with higher doses per fraction given in a shorter time frame (hypofractionation). We are unable to cover these new technologies in detail in this review, just as we must omit low-dose stochastic effects, and many aspects of dose, dose rate and radiation quality. We argue that structural diversity and plasticity within tissue compartments provides a general context for discussion of most radiation responses, while acknowledging many omissions. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Asunto(s)
Síndrome de Radiación Aguda/etiología , Relación Dosis-Respuesta en la Radiación , Neoplasias/radioterapia , Tolerancia a Radiación/fisiología , Síndrome de Radiación Aguda/patología , Daño del ADN/genética , Humanos , Factores de Tiempo
3.
J Transl Med ; 17(1): 113, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30953519

RESUMEN

BACKGROUND: Various proinflammatory cytokines can be detected within the melanoma tumor microenvironment. Interleukin 32 (IL32) is produced by T cells, NK cells and monocytes/macrophages, but also by a subset of melanoma cells. We sought to better understand the biology of IL32 in human melanoma. METHODS: We analyzed RNA sequencing data from 53 in-house established human melanoma cell lines and 479 melanoma tumors from The Cancer Genome Atlas dataset. We evaluated global gene expression patterns associated with IL32 expression. We also evaluated the impact of proinflammatory molecules TNFα and IFNγ on IL32 expression and dedifferentiation in melanoma cell lines in vitro. In order to study the transcriptional regulation of IL32 in these cell lines, we cloned up to 10.5 kb of the 5' upstream region of the human IL32 gene into a luciferase reporter vector. RESULTS: A significant proportion of established human melanoma cell lines express IL32, with its expression being highly correlated with a dedifferentiation genetic signature (high AXL/low MITF). Non IL32-expressing differentiated melanoma cell lines exposed to TNFα or IFNγ can be induced to express the three predominant isoforms (α, ß, γ) of IL32. Cis-acting elements within this 5' upstream region of the human IL32 gene appear to govern both induced and constitutive gene expression. In the tumor microenvironment, IL32 expression is highly correlated with genes related to T cell infiltration, and also positively correlates with high AXL/low MITF dedifferentiated gene signature. CONCLUSIONS: Expression of IL32 in human melanoma can be induced by TNFα or IFNγ and correlates with a treatment-resistant dedifferentiated genetic signature. Constitutive and induced expression are regulated, in part, by cis-acting sequences within the 5' upstream region.


Asunto(s)
Interleucinas/genética , Melanoma/genética , Neoplasias Cutáneas/genética , Biopsia , Desdiferenciación Celular/genética , Línea Celular Tumoral , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Interferón gamma/metabolismo , Linfocitos Infiltrantes de Tumor/metabolismo , Linfocitos Infiltrantes de Tumor/patología , Melanoma/patología , Análisis por Micromatrices , Metástasis de la Neoplasia , Neoplasias Cutáneas/patología , Transcriptoma , Microambiente Tumoral/genética , Factor de Necrosis Tumoral alfa/metabolismo
4.
Cell Rep ; 43(6): 114289, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38833371

RESUMEN

Type I interferon (IFN-I) and IFN-γ foster antitumor immunity by facilitating T cell responses. Paradoxically, IFNs may promote T cell exhaustion by activating immune checkpoints. The downstream regulators of these disparate responses are incompletely understood. Here, we describe how interferon regulatory factor 1 (IRF1) orchestrates these opposing effects of IFNs. IRF1 expression in tumor cells blocks Toll-like receptor- and IFN-I-dependent host antitumor immunity by preventing interferon-stimulated gene (ISG) and effector programs in immune cells. In contrast, expression of IRF1 in the host is required for antitumor immunity. Mechanistically, IRF1 binds distinctly or together with STAT1 at promoters of immunosuppressive but not immunostimulatory ISGs in tumor cells. Overexpression of programmed cell death ligand 1 (PD-L1) in Irf1-/- tumors only partially restores tumor growth, suggesting multifactorial effects of IRF1 on antitumor immunity. Thus, we identify that IRF1 expression in tumor cells opposes host IFN-I- and IRF1-dependent antitumor immunity to facilitate immune escape and tumor growth.


Asunto(s)
Factor 1 Regulador del Interferón , Factor 1 Regulador del Interferón/metabolismo , Factor 1 Regulador del Interferón/genética , Animales , Ratones , Humanos , Neoplasias/inmunología , Neoplasias/patología , Neoplasias/metabolismo , Neoplasias/genética , Ratones Endogámicos C57BL , Línea Celular Tumoral , Factor de Transcripción STAT1/metabolismo , Antígeno B7-H1/metabolismo , Inmunidad
6.
Prostate Cancer Prostatic Dis ; 26(1): 207-209, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35058580

RESUMEN

BACKGROUND: Radiotherapy impacts the local immune response to cancers. Prostate Stereotactic Body Radiotherapy (SBRT) is a highly focused method to deliver radiotherapy often used to treat prostate cancer. This is the first direct comparison of immune cells within prostate cancers before and after SBRT in patients. METHODS: Prostate cancers before and 2 weeks after SBRT are interrogated by multiplex immune fluorescence targeting various T cells and macrophages markers and analyzed by cell and pixel density, as part of a clinical trial of SBRT neoadjuvant to radical prostatectomy. RESULTS: Two weeks after SBRT, CD68, and CD163 macrophages are significantly increased while CD8 T cells are decreased. SBRT markedly alters the immune environment within prostate cancers.


Asunto(s)
Neoplasias de la Próstata , Radiocirugia , Masculino , Humanos , Neoplasias de la Próstata/radioterapia , Neoplasias de la Próstata/cirugía , Neoplasias de la Próstata/patología , Radiocirugia/métodos , Próstata/patología , Linfocitos T CD8-positivos , Recuento de Células
7.
Neuro Oncol ; 25(11): 1989-2000, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37279645

RESUMEN

BACKGROUND: Resistance to existing therapies is a significant challenge in improving outcomes for glioblastoma (GBM) patients. Metabolic plasticity has emerged as an important contributor to therapy resistance, including radiation therapy (RT). Here, we investigated how GBM cells reprogram their glucose metabolism in response to RT to promote radiation resistance. METHODS: Effects of radiation on glucose metabolism of human GBM specimens were examined in vitro and in vivo with the use of metabolic and enzymatic assays, targeted metabolomics, and FDG-PET. Radiosensitization potential of interfering with M2 isoform of pyruvate kinase (PKM2) activity was tested via gliomasphere formation assays and in vivo human GBM models. RESULTS: Here, we show that RT induces increased glucose utilization by GBM cells, and this is accompanied with translocation of GLUT3 transporters to the cell membrane. Irradiated GBM cells route glucose carbons through the pentose phosphate pathway (PPP) to harness the antioxidant power of the PPP and support survival after radiation. This response is regulated in part by the PKM2. Activators of PKM2 can antagonize the radiation-induced rewiring of glucose metabolism and radiosensitize GBM cells in vitro and in vivo. CONCLUSIONS: These findings open the possibility that interventions designed to target cancer-specific regulators of metabolic plasticity, such as PKM2, rather than specific metabolic pathways, have the potential to improve the radiotherapeutic outcomes in GBM patients.


Asunto(s)
Glioblastoma , Piruvato Quinasa , Humanos , Piruvato Quinasa/metabolismo , Glioblastoma/metabolismo , Antioxidantes , Isoformas de Proteínas , Glucosa/metabolismo , Línea Celular Tumoral
8.
Int J Radiat Biol ; 98(3): 346-366, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34129427

RESUMEN

PURPOSE: As part of the special issue on 'Women in Science', this review offers a perspective on past and ongoing work in the field of normal (non-cancer) tissue radiation biology, highlighting the work of many of the leading contributors to this field of research. We discuss some of the hypotheses that have guided investigations, with a focus on some of the critical organs considered dose-limiting with respect to radiation therapy, and speculate on where the field needs to go in the future. CONCLUSIONS: The scope of work that makes up normal tissue radiation biology has and continues to play a pivotal role in the radiation sciences, ensuring the most effective application of radiation in imaging and therapy, as well as contributing to radiation protection efforts. However, despite the proven historical value of preclinical findings, recent decades have seen clinical practice move ahead with altered fractionation scheduling based on empirical observations, with little to no (or even negative) supporting scientific data. Given our current appreciation of the complexity of normal tissue radiation responses and their temporal variability, with tissue- and/or organ-specific mechanisms that include intra-, inter- and extracellular messaging, as well as contributions from systemic compartments, such as the immune system, the need to maintain a positive therapeutic ratio has never been more urgent. Importantly, mitigation and treatment strategies, whether for the clinic, emergency use following accidental or deliberate releases, or reducing occupational risk, will likely require multi-targeted approaches that involve both local and systemic intervention. From our personal perspective as five 'Women in Science', we would like to acknowledge and applaud the role that many female scientists have played in this field. We stand on the shoulders of those who have gone before, some of whom are fellow contributors to this special issue.


Asunto(s)
Neoplasias , Protección Radiológica , Femenino , Humanos , Radiobiología
9.
Toxics ; 10(12)2022 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-36548630

RESUMEN

Heart disease is a significant adverse event caused by radiotherapy for some cancers. Identifying the origins of radiogenic heart disease will allow therapies to be developed. Previous studies showed non-targeted effects manifest as fibrosis in the non-irradiated heart after 120 days following targeted X-irradiation of the kidneys with 10 Gy in WAG/RijCmcr rats. To demonstrate the involvement of T cells in driving pathophysiological responses in the out-of-field heart, and to characterize the timing of immune cell engagement, we created and validated a T cell knock downrat on the WAG genetic backgrou nd. Irradiation of the kidneys with 10 Gy of X-rays in wild-type rats resulted in infiltration of T cells, natural killer cells, and macrophages after 120 days, and none of these after 40 days, suggesting immune cell engagement is a late response. The radiation nephropathy and cardiac fibrosis that resulted in these animals after 120 days was significantly decreased in irradiated T cell depleted rats. We conclude that T cells function as an effector cell in communicating signals from the irradiated kidneys which cause pathologic remodeling of non-targeted heart.

10.
Antioxidants (Basel) ; 11(9)2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36139722

RESUMEN

Nuclear factor erythroid 2-related factor 2 (NRF2) is recognized as a master transcription factor that regulates expression of numerous detoxifying and antioxidant cytoprotective genes. In fact, models of NRF2 deficiency indicate roles not only in redox regulation, but also in metabolism, inflammatory/autoimmune disease, cancer, and radioresistancy. Since ionizing radiation (IR) generates reactive oxygen species (ROS), it is not surprising it activates NRF2 pathways. However, unexpectedly, activation is often delayed for many days after the initial ROS burst. Here, we demonstrate that, as assayed by γ-H2AX staining, rapid DNA double strand break (DSB) formation by IR in primary mouse Nrf2-/- MEFs was not affected by loss of NRF2, and neither was DSB repair to any great extent. In spite of this, basal and IR-induced transformation was greatly enhanced, suggesting that NRF2 protects against late IR-induced genomic instability, at least in murine MEFs. Another possible IR- and NRF2-related event that could be altered is inflammation and NRF2 deficiency increased IR-induced NF-κB pro-inflammatory responses mostly late after exposure. The proclivity of NRF2 to restrain inflammation is also reflected in the reprogramming of tumor antigen-specific lymphocyte responses in mice where Nrf2 k.o. switches Th2 responses to Th1 polarity. Delayed NRF2 responses to IR may be critical for the immune transition from prooxidant inflammation to antioxidant healing as well as in driving cellular radioresistance and survival. Targeting NRF2 to reprogram immunity could be of considerable therapeutic benefit in radiation and immunotherapy.

11.
Int J Radiat Biol ; 98(3): 267-275, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35030065

RESUMEN

PURPOSE: This review is focused on radium and radionuclides in its decay chain in honor of Marie Curie, who discovered this element. MATERIALS AND METHODS: We conglomerated current knowledge regarding radium and its history predating our present understanding of this radionuclide. RESULTS: An overview of the properties of radium and its dose assessment is shown followed by discussions about both the negative detrimental and positive therapeutic applications of radium with this history and its evolution reflecting current innovations in medical science. CONCLUSIONS: We hope to remind all those who are interested in the progress of science about the vagaries of the process of scientific discovery. In addition, we raise the interesting question of whether Marie Curie's initial success was in part possible due to her tight alignment with her husband Pierre Curie who pushed the work along.


Asunto(s)
Radiología , Radio (Elemento) , Femenino , Francia , Historia del Siglo XIX , Historia del Siglo XX , Humanos , Radiología/historia
12.
Front Oncol ; 12: 1045016, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439420

RESUMEN

Total body irradiation (TBI) is a commonly used conditioning regimen for hematopoietic stem cell transplant (HCT), but dose heterogeneity and long-term organ toxicity pose significant challenges. Total marrow irradiation (TMI), an evolving radiation conditioning regimen for HCT can overcome the limitations of TBI by delivering the prescribed dose targeted to the bone marrow (BM) while sparing organs at risk. Recently, our group demonstrated that TMI up to 20 Gy in relapsed/refractory AML patients was feasible and efficacious, significantly improving 2-year overall survival compared to the standard treatment. Whether such dose escalation is feasible in elderly patients, and how the organ toxicity profile changes when switching to TMI in patients of all ages are critical questions that need to be addressed. We used our recently developed 3D image-guided preclinical TMI model and evaluated the radiation damage and its repair in key dose-limiting organs in young (~8 weeks) and old (~90 weeks) mice undergoing congenic bone marrow transplant (BMT). Engraftment was similar in both TMI and TBI-treated young and old mice. Dose escalation using TMI (12 to 16 Gy in two fractions) was well tolerated in mice of both age groups (90% survival ~12 Weeks post-BMT). In contrast, TBI at the higher dose of 16 Gy was particularly lethal in younger mice (0% survival ~2 weeks post-BMT) while old mice showed much more tolerance (75% survival ~13 weeks post-BMT) suggesting higher radio-resistance in aged organs. Histopathology confirmed worse acute and chronic organ damage in mice treated with TBI than TMI. As the damage was alleviated, the repair processes were augmented in the TMI-treated mice over TBI as measured by average villus height and a reduced ratio of relative mRNA levels of amphiregulin/epidermal growth factor (areg/egf). These findings suggest that organ sparing using TMI does not limit donor engraftment but significantly reduces normal tissue damage and preserves repair capacity with the potential for dose escalation in elderly patients.

13.
Clin Dev Immunol ; 2011: 439752, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22162711

RESUMEN

Stereotactic radiation approaches are gaining more popularity for the treatment of intracranial as well as extracranial tumors in organs such as the liver and lung. Technology, rather than biology, is driving the rapid adoption of stereotactic body radiation therapy (SBRT), also known as stereotactic ablative radiotherapy (SABR), in the clinic due to advances in precise positioning and targeting. Dramatic improvements in tumor control have been demonstrated; however, our knowledge of normal tissue biology response mechanisms to large fraction sizes is lacking. Herein, we will discuss how SABR can induce cellular expression of MHC I, adhesion molecules, costimulatory molecules, heat shock proteins, inflammatory mediators, immunomodulatory cytokines, and death receptors to enhance antitumor immune responses.


Asunto(s)
Sistema Inmunológico/efectos de la radiación , Neoplasias/inmunología , Neoplasias/cirugía , Radiocirugia/métodos , Animales , Apoptosis/inmunología , Antígeno B7-1/inmunología , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/cirugía , Moléculas de Adhesión Celular/inmunología , Citocinas/inmunología , Proteínas de Choque Térmico/inmunología , Humanos , Tolerancia Inmunológica , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/cirugía , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/cirugía , Complejo Mayor de Histocompatibilidad/inmunología , Ratones , Ratones Noqueados , Receptores de Muerte Celular/inmunología , Escape del Tumor
14.
Environ Int ; 149: 106212, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33293042

RESUMEN

Ionizing radiation interacts with the immune system in many ways with a multiplicity that mirrors the complexity of the immune system itself: namely the need to maintain a delicate balance between different compartments, cells and soluble factors that work collectively to protect, maintain, and restore tissue function in the face of severe challenges including radiation damage. The cytotoxic effects of high dose radiation are less relevant after low dose exposure, where subtle quantitative and functional effects predominate that may go unnoticed until late after exposure or after a second challenge reveals or exacerbates the effects. For example, low doses may permanently alter immune fitness and therefore accelerate immune senescence and pave the way for a wide spectrum of possible pathophysiological events, including early-onset of age-related degenerative disorders and cancer. By contrast, the so called low dose radiation therapy displays beneficial, anti-inflammatory and pain relieving properties in chronic inflammatory and degenerative diseases. In this review, epidemiological, clinical and experimental data regarding the effects of low-dose radiation on the homeostasis and functional integrity of immune cells will be discussed, as will be the role of immune-mediated mechanisms in the systemic manifestation of localized exposures such as inflammatory reactions. The central conclusion is that ionizing radiation fundamentally and durably reshapes the immune system. Further, the importance of discovery of immunological pathways for modifying radiation resilience amongst other research directions in this field is implied.


Asunto(s)
Neoplasias , Radiación Ionizante , Relación Dosis-Respuesta en la Radiación , Humanos , Sistema Inmunológico , Inflamación
15.
Stem Cell Res Ther ; 12(1): 301, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-34044885

RESUMEN

BACKGROUND: Powerful constitutive and inducible transgenic / bitransgenic / tritransgenic murine models of breast cancer have been used over the past two decades to shed light on the molecular mechanisms by which the given transgenic oncogenes have interacted with other cellular genes and set in motion breast cancer initiation and progression. However, these transgenic models, as in vivo models only, are expensive and restrictive in the opportunities they provide to manipulate the experimental variables that would enable a better understanding of the molecular events related to initial transformation and the target cell being transformed. METHODS: To overcome some of these limitations, we derived oncogene-containing induced pluripotent stem cell (iPSC) clones from tail vein fibroblasts of these transgenic mice and manipulated them both in vitro and in vivo in non-transgenic background mice. We created the iPSC clones with a relatively low M.O.I, producing retroviral integrations which averaged only 1 to 2 sites per retroviral plasmid construct used. RESULTS: Most iPSC clones derived from each group displayed an essentially normal murine karyotype, strong expression of the exogenous reprogrammable genes and significant expression of characteristic endogenous murine surface stem cell markers including SSEA-1 (CD15), PECAM-1 (CD31), Ep-Cam (CD326), and Nectin (CD112), but no expression of their transgene. A majority (75%) of iPSC clones displayed a normal murine karyotype but 25% exhibited a genomically unstable karyotype. However, even these later clones exhibited stable and characteristic iPSC properties. When injected orthotopically, select iPSC clones, either constitutive or inducible, no longer expressed their exogenous pluripotency reprogramming factors but expressed their oncogenic transgene (PyVT or ErbB2) and participated in both breast ontogenesis and subsequent oncogenesis. When injected non-orthotopically or when differentiated in vitro along several different non-mammary lineages of differentiation, the iPSC clones failed to do so. Although many clones developed anticipated teratomas, select iPSC clones under the appropriate constitutive or inducible conditions exhibited both breast ontogenesis and oncogenesis through the same stages as exhibited by their transgenic murine parents and, as such, represent transgenic surrogates. CONCLUSIONS: The iPSC clones offer a number of advantages over transgenic mice including cost, the ability to manipulate and tag in vitro, and create an in vitro model of breast ontogeny and oncogenesis that can be used to gain additional insights into the differentiated status of the target cell which is susceptible to transformation. In addition, the use of these oncogene-containing iPSC clones can be used in chemopreventive studies of breast cancer.


Asunto(s)
Células Madre Pluripotentes Inducidas , Animales , Diferenciación Celular , Transformación Celular Neoplásica/genética , Fibroblastos , Ratones , Ratones Transgénicos , Oncogenes/genética
16.
Front Pharmacol ; 12: 666776, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34084139

RESUMEN

We previously reported several vignettes on types and classes of drugs able to mitigate acute and, in at least one case, late radiation syndromes in mice. Most of these had emerged from high throughput screening (HTS) of bioactive and chemical drug libraries using ionizing radiation-induced lymphocytic apoptosis as a readout. Here we report the full analysis of the HTS screen of libraries with 85,000 small molecule chemicals that identified 220 "hits." Most of these hits could be allocated by maximal common substructure analysis to one of 11 clusters each containing at least three active compounds. Further screening validated 23 compounds as being most active; 15 of these were cherry-picked based on drug availability and tested for their ability to mitigate acute hematopoietic radiation syndrome (H-ARS) in mice. Of these, five bore a 4-nitrophenylsulfonamide motif while 4 had a quinoline scaffold. All but two of the 15 significantly (p < 0.05) mitigated H-ARS in mice. We had previously reported that the lead 4-(nitrophenylsulfonyl)-4-phenylpiperazine compound (NPSP512), was active in mitigating multiple acute and late radiation syndromes in mice of more than one sex and strain. Unfortunately, the formulation of this drug had to be changed for regulatory reasons and we report here on the synthesis and testing of active analogs of NPSP512 (QS1 and 52A1) that have increased solubility in water and in vivo bioavailability while retaining mitigator activity against H-ARS (p < 0.0001) and other radiation syndromes. The lead quinoline 057 was also active in multiple murine models of radiation damage. Taken together, HTS of a total of 150,000 bioactive or chemical substances, combined with maximal common substructure analysis has resulted in the discovery of diverse groups of compounds that can mitigate H-ARS and at least some of which can mitigate multiple radiation syndromes when given starting 24 h after exposure. We discuss what is known about how these agents might work, and the importance of formulation and bioavailability.

17.
Prostate Cancer Prostatic Dis ; 24(1): 135-139, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32647353

RESUMEN

BACKGROUND: Hundreds of ongoing clinical trials combine radiation therapy, mostly delivered as stereotactic body radiotherapy (SBRT), with immune checkpoint blockade. However, our understanding of the effect of radiotherapy on the intratumoral immune balance is inadequate, hindering the optimal design of trials that combine radiation therapy with immunotherapy. Our objective was to characterize the intratumoral immune balance of the malignant prostate after SBRT in patients. METHODS: Sixteen patients with high-risk, non-metastatic prostate cancer at comparable Gleason Grade disease underwent radical prostatectomy with (n = 9) or without (n = 7) neoadjuvant SBRT delivered in three fractions of 8 Gy over 5 days completed 2 weeks before surgery. Freshly resected prostate specimens were processed to obtain single-cell suspensions, and immune-phenotyped for major lymphoid and myeloid cell subsets by staining with two separate 14-antibody panels and multicolor flow cytometry analysis. RESULTS: Malignant prostates 2 weeks after SBRT had an immune infiltrate dominated by myeloid cells, whereas malignant prostates without preoperative treatment were more lymphoid-biased (myeloid CD45+ cells 48.4 ± 19.7% vs. 25.4 ± 7.0%; adjusted p-value = 0.11; and CD45+ lymphocytes 51.6 ± 19.7% vs. 74.5 ± 7.0%; p = 0.11; CD3+ T cells 35.2 ± 23.8% vs. 60.9 ± 9.7%; p = 0.12; mean ± SD). CONCLUSION: SBRT drives a significant lymphoid to myeloid shift in the prostate-tumor immune infiltrate. This may be of interest when combining SBRT with immunotherapies, particularly in prostate cancer.


Asunto(s)
Inmunoterapia/métodos , Células Mieloides/patología , Prostatectomía/métodos , Neoplasias de la Próstata/terapia , Radiocirugia/métodos , Humanos , Inyecciones Intralinfáticas , Masculino , Persona de Mediana Edad , Terapia Neoadyuvante , Clasificación del Tumor , Próstata , Neoplasias de la Próstata/patología , Calidad de Vida
18.
Cancers (Basel) ; 12(3)2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32197352

RESUMEN

The purpose of this study was to determine the dynamic contributions of different immune cell subsets to primary and abscopal tumor regression after hypofractionated radiation therapy (hRT) and the impact of anti-PD-1 therapy. A bilateral syngeneic FSA1 fibrosarcoma model was used in immunocompetent C3H mice, with delayed inoculation to mimic primary and microscopic disease. The effect of tumor burden on intratumoral and splenic immune cell content was delineated as a prelude to hRT on macroscopic T1 tumors with 3 fractions of 8 Gy while microscopic T2 tumors were left untreated. This was performed with and without systemic anti-PD-1. Immune profiles within T1 and T2 tumors and in spleen changed drastically with tumor burden in untreated mice with infiltrating CD4+ content declining, while the proportion of CD4+ Tregs rose. Myeloid cell representation escalated in larger tumors, resulting in major decreases in the lymphoid:myeloid ratios. In general, activation of Tregs and myeloid-derived suppressor cells allow immunogenic tumors to grow, although their relative contributions change with time. The evidence suggests that primary T1 tumors self-regulate their immune content depending on their size and this can influence the lymphoid compartment of T2 tumors, especially with respect to Tregs. Tumor burden is a major confounding factor in immune analysis that has to be taken into consideration in experimental models and in the clinic. hRT caused complete local regression of primary tumors, which was accompanied by heavy infiltration of CD8+ T cells activated to express IFN-γ and PD-1; while certain myeloid populations diminished. In spite of this active infiltrate, primary hRT failed to generate the systemic conditions required to cause abscopal regression of unirradiated microscopic tumors unless PD-1 blockade, which on its own was ineffective, was added to the RT regimen. The combination further increased local and systemically activated CD8+ T cells, but few other changes. This study emphasizes the subtle interplay between the immune system and tumors as they grow and how difficult it is for local RT, which can generate a local immune response that may help with primary tumor regression, to overcome the systemic barriers that are generated so as to effect immune regression of even small abscopal lesions.

19.
PLoS One ; 15(5): e0232411, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32392259

RESUMEN

Acute radiation exposure of the thorax can lead to late serious, and even life-threatening, pulmonary and cardiac damage. Sporadic in nature, late complications tend to be difficult to predict, which prompted this investigation into identifying non-invasive, tissue-specific biomarkers for the early detection of late radiation injury. Levels of circulating microRNA (miRNA) were measured in C3H and C57Bl/6 mice after whole thorax irradiation at doses yielding approximately 70% mortality in 120 or 180 days, respectively (LD70/120 or 180). Within the first two weeks after exposure, weight gain slowed compared to sham treated mice along with a temporary drop in white blood cell counts. 52% of C3H (33 of 64) and 72% of C57Bl/6 (46 of 64) irradiated mice died due to late radiation injury. Lung and heart damage, as assessed by computed tomography (CT) and histology at 150 (C3H mice) and 180 (C57Bl/6 mice) days, correlated well with the appearance of a local, miRNA signature in the lung and heart tissue of irradiated animals, consistent with inherent differences in the C3H and C57Bl/6 strains in their propensity for developing radiation-induced pneumonitis or fibrosis, respectively. Radiation-induced changes in the circulating miRNA profile were most prominent within the first 30 days after exposure and included miRNA known to regulate inflammation and fibrosis. Importantly, early changes in plasma miRNA expression predicted survival with reasonable accuracy (88-92%). The miRNA signature that predicted survival in C3H mice, including miR-34a-5p, -100-5p, and -150-5p, were associated with pro-inflammatory NF-κB-mediated signaling pathways, whereas the signature identified in C57Bl/6 mice (miR-34b-3p, -96-5p, and -802-5p) was associated with TGF-ß/SMAD signaling. This study supports the hypothesis that plasma miRNA profiles could be used to identify individuals at high risk of organ-specific late radiation damage, with applications for radiation oncology clinical practice or in the context of a radiological incident.


Asunto(s)
MicroARNs/genética , Traumatismos Experimentales por Radiación/genética , Neumonitis por Radiación/genética , Animales , MicroARN Circulante/sangre , MicroARN Circulante/genética , Femenino , Corazón/efectos de la radiación , Humanos , Pulmón/metabolismo , Pulmón/efectos de la radiación , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , MicroARNs/sangre , MicroARNs/metabolismo , Miocardio/metabolismo , Modelos de Riesgos Proporcionales , Traumatismos Experimentales por Radiación/sangre , Traumatismos Experimentales por Radiación/metabolismo , Neumonitis por Radiación/sangre , Neumonitis por Radiación/metabolismo , Especificidad de la Especie , Distribución Tisular
20.
Int J Radiat Oncol Biol Phys ; 108(4): 930-935, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-32562839

RESUMEN

PURPOSE: This study aimed to evaluate the feasibility and safety of prostate stereotactic body radiation therapy (SBRT) neoadjuvant to radical prostatectomy (RP) in a phase 1 trial. The primary endpoint was treatment completion rate without severe acute surgical complications. Secondary endpoints included patient-reported quality of life and physician-reported toxicities. METHODS AND MATERIALS: Patients with nonmetastatic high-risk or locally advanced prostate cancer received 24 Gy in 3 fractions to the prostate and seminal vesicles over 5 days, completed 2 weeks before RP. Patients with pN1 disease were treated after multidisciplinary discussion and shared decision making. Patient-reported quality of life (International Prostate Symptom Score and Expanded Prostate Cancer Index Composite 26-item version questionnaires) and physician-reported toxicity (Common Terminology Criteria for Adverse Events, version 4.03) were assessed before SBRT, immediately before surgery, and at 3-month intervals for 1 year. RESULTS: Twelve patients were enrolled, and 11 completed treatment (1 patient had advanced disease on prostate-specific membrane antigen positron emission tomography after enrollment but before treatment). There were no significant surgical complications. After RP, 2 patients underwent additional radiation therapy to nodes with androgen suppression for pN1 disease. Median follow-up after completion of treatment was 20.1 months, with 9 of 11 patients having a follow-up period of >12 months. Two patients had biochemical recurrence (prostate-specific antigen ≥0.05) within the first 12 months, with an additional 2 patients found to have biochemical recurrence after the 12-month period. The highest Common Terminology Criteria for Adverse Events genitourinary grades were 0, 1, 2, and 3 (n = 1, 4, 4, and 2, respectively), and the highest gastrointestinal grades were 0, 1, and 2 (n = 9, 1, and 1, respectively). At 12 months, incontinence was the only grade ≥2 toxicity. One and 2 of 9 patients had grade 2 and 3 incontinence, respectively. On the Expanded Prostate Cancer Index Composite (26-item version), the mean/median changes in scores from baseline to 12 months were -32.8/-31.1 for urinary incontinence, -1.6/-6.2 for urinary irritative/obstructive, -2.1/0 for bowel, -34.4/-37.5 for sexual function, and -10.6/-2.5 for hormonal. The mean/median change in International Prostate Symptom Score from baseline to 12 months was 0.5/0.5. CONCLUSIONS: RP after neoadjuvant SBRT appears to be feasible and safe at the dose tested. The severity of urinary incontinence may be higher than RP alone.


Asunto(s)
Terapia Neoadyuvante/métodos , Prostatectomía , Neoplasias de la Próstata/radioterapia , Neoplasias de la Próstata/cirugía , Radiocirugia , Estudios de Factibilidad , Estudios de Seguimiento , Humanos , Masculino , Próstata/efectos de la radiación , Neoplasias de la Próstata/patología , Calidad de Vida , Vesículas Seminales/efectos de la radiación , Incontinencia Urinaria/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA